paint-brush
LIME IN AGRICULTUREby@jeanhenrifabre

LIME IN AGRICULTURE

by Jean-Henri FabreMay 15th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

“To be fertile a soil must contain limestone, sand, and clay, besides the organic substances coming from humus and fertilizers. Now it may be that nature has not endowed the soil with a sufficient quantity or with any of these three constituents. Then the character of the soil must be corrected by giving it what it lacks. That is what is called improving the land. Thus a soil that is too sandy is improved by the addition of limestone and clay; one that is too compact, too clayey, is improved by adding sand and, still more, by adding limestone. Mineral substances thus added to the soil to correct it are called correctives. These substances coöperate also in the nutrition of plants, and from this point of view may be regarded as mineral fertilizers.
featured image - LIME IN AGRICULTURE
Jean-Henri Fabre HackerNoon profile picture

Field, Forest and Farm by Jean-Henri Fabre, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. LIME IN AGRICULTURE

CHAPTER X. LIME IN AGRICULTURE

“To be fertile a soil must contain limestone, sand, and clay, besides the organic substances coming from humus and fertilizers. Now it may be that nature has not endowed the soil with a sufficient quantity or with any of these three constituents. Then the character of the soil must be corrected by giving it what it lacks. That is what is called improving the land. Thus a soil that is too sandy is improved by the addition of limestone and clay; one that is too compact, too clayey, is improved by adding sand and, still more, by adding limestone. Mineral substances thus added to the soil to correct it are called correctives. These substances coöperate also in the nutrition of plants, and from this point of view may be regarded as mineral fertilizers.

“One of the most valuable of correctives is lime, which is indispensable to soils lacking limestone, indispensable also to the nutrition of nearly all our cultivated vegetables. It acts in various ways. First, it energetically attacks vegetable substances, decomposing them and converting them into humus. A pile of leaves that would take long months to rot becomes in a short time a mass of humus when mixed with lime. Hence its great utility in fields overgrown [53]with weeds, and in newly cleared land—in short, wherever there are old stumps, piles of leaves, remnants of wood, and patches of heather, which need to be decomposed. With the help of lime all these herbaceous or woody substances are quickly converted into humus, with which the soil becomes enriched to the great advantage of future crops.

“In the second place, lime corrects or neutralizes the acidity peculiar to certain soils, as is proved by the following experiment. Let us mix some vinegar, no matter how strong, with a little lime. In a short time the smell and acid taste of the vinegar will have disappeared. Now wherever masses of vegetable refuse, such as leaves, mosses, rushes, old stumps, are undergoing decay, there are produced certain sour-tasting substances or, in other words, acids, which are invariably harmful to agriculture. This generation of acid occurs notably in turfy soils, which have an excessive acidity favorable to the growth of coarse rushes and sedges that are valueless to us, and at the same time this acid is highly injurious to all our cultivated plants. Lime, therefore, which is sure to correct this acidity, works wonders in marshy lands, damp meadows, and turfy soils. We are warned of the need of lime by the appearance of ferns, heather, sedge or reed-grass, rushes, mosses and sphagnei.

“Thirdly, when once mixed with the soil, lime speedily resumes the form it wore before passing through the lime-kiln; that is to say, it becomes limestone, but in the shape of fine powder. This return [54]to the limestone condition is brought about by union with the carbonic acid gas coming from the atmosphere or thrown off by the substances decaying in the ground. Under this new form lime continues to play a useful part by supplying the calcareous ingredient to soil that lacked it, and also by preventing the clay from becoming too cohesive, too impervious to air and water.

“The addition of lime to the soil should take place at the end of summer, when the ground is dry. Little heaps of quicklime, each containing about twenty kilograms, are placed at intervals of five meters and covered with a few spadefuls of earth. In a short time the moisture in the atmosphere reduces the lime to a fine powder, which is then spread evenly with a shovel and covered with earth—an operation involving no severe labor.

“Lime should never be applied with seed. Mere contact with it would burn the young shoots. Neither should it be mixed with manure before it is used, since the immediate result would be a total loss of great quantities of ammonia, thrown off in gaseous form; and ammonia, as I have explained, is one of the richest of fertilizers. Lime and manure, therefore, should be used separately.

“Soils rich in turf, clay, or granite are the ones on which lime acts most beneficially. Because of the important results attained by the use of lime, its manufacture for purely agricultural purposes by certain expeditious and effective methods is customary in many places. Thus in Mayenne, where this application [55]of lime has converted tracts of uncultivated clayey land into rich pastures or into wheat fields of exceptional fertility, lime is made in enormous kilns a dozen meters high and supported by the cliff that furnishes the limestone and sometimes the fuel also.

“All animal matter makes excellent fertilizer. Of this class are old woolen rags, stray bits of leather, fragments of horn, dried blood from slaughter-houses, and flesh not fit for human consumption. All these substances are rich in nitrogen and phosphates, and if mixed with farm manure they add greatly to its value. Lime furnishes us the means of utilizing one of these substances, flesh, in the best way possible.

“Dead bodies of animals, heedlessly left for dogs and crows and magpies to devour, should be cut up in pieces and then buried with a mixture of earth and quicklime. This attacks the flesh and quickly decomposes it, so that in a few months’ time there would be available a deposit of the most powerful fertilizer instead of a useless, disease-breeding carcass. As to the bones, resistant to the action of lime, they are burned to render them more friable, and then reduced to powder. This bone-dust, mixed with the fertilizer furnished by the decayed flesh, will contribute to grain-field or pasture a rich supply of phosphorus. To uses of this sort the farmer should put all horses and mules that have had to be killed, as well as all large farm animals that have died of disease.”

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Jean-Henri Fabre (2022). Field, Forest and Farm. Urbana, Illinois: Project Gutenberg. Retrieved October https://www.gutenberg.org/cache/epub/67813/pg67813-images.html

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.