paint-brush

This story draft by @einstein has not been reviewed by an editor, YET.

The Curvature of Space-Time

featured image - The Curvature of Space-Time
Albert Einstein HackerNoon profile picture

Einstein's Theories of Relativity and Gravitation by Albert Einstein, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. The Curvature of Space-Time

The Curvature of Space-Time

The invariant expression for separation, it will be seen, is in the same form as that of the Euclidean four-dimensional invariant save for the minus sign before the time-difference (the appearance of the constant C in connection with the time coordinate t is merely an adjustment of units; see page 153). This tells us that not alone is the geometry of the time-space continuum non-Euclidean in its methods of measurement, but also in its results, to the extent that it possesses a curvature. It compares with the Euclidean four-dimensional continuum in much the same way that a spherical surface compares with a plane. As a matter of fact, a more illuminating analogy here would be that between the cylindrical surface and the plane, though neither is quite exact. To make this clear requires a little discussion of an elementary notion which we have not yet had to consider.[159]

Our three-dimensional existence often reduces, for all practical purposes, to a two-dimensional one. The objects and the events of a certain room may quite satisfactorily be defined by thinking of them, not as located in space, but as lying in the floor of the room. Mathematically the justification for this viewpoint is got by saying that we have elected to consider a slice of our three-dimensional world of the sort which we know as a plane. When we consider this plane and the points in it, we find that we have taken a cross-section of the three-dimensional world. A line in that world is now reduced, for us, to a single point—the point where it cuts our plane; a plane is reduced to a line—the line where it cuts our plane; the three-dimensional world itself is reduced to our plane itself. Everything three-dimensional falls down into its shadow in our plane, losing in the process that one of the three dimensions which is not present in our plane.

For simplicity’s sake it is usual to take a cross-section of space parallel to one of our coordinate axes. We think of our three dimensions as extending in the directions of those axes; and it is easier to take a horizontal or vertical section which shall simply wipe out one of these dimensions than to take an oblique section which shall wipe out a dimension that consists partly of our original length, and partly of our original width, and partly of our original height.

If we have a four-dimensional manifold to begin with, we may equally shake out one of the four dimensions, one of the four coordinates, and consider the three-dimensional result of this process as [160]a cross-section of the original four-dimensional continuum. And where, in cross-sectioning a three-dimensioned world, we have but three choices of a coordinate to eliminate, in cross-sectioning a world of four dimensions we have four choices. By dropping out either the x, or the y, or the z, or the t, we get a three-dimensioned cross-section.

Now our accustomed three-dimensional space is strictly Euclidean. When we cross-section it, we get a Euclidean plane no matter what the direction in which we make the cut. Likewise the Euclidean plane is wholly Euclidean, because when we cross-section it in any direction whatever we get a Euclidean line. A cylindrical surface, on the other hand, is neither wholly Euclidean nor wholly non-Euclidean in this matter of cross-sectioning. If we take a section in one direction we get a Euclidean line and if we take a section in the other direction we get a circle (if the cylindrical surface be a circular one). And of course if we take an oblique section of any sort, it is neither line nor circle, but a compromise between the two—the significant thing being that it is still not a Euclidean line.

The space-time continuum presents an analogous situation. When we cross-section it by dropping out any one of the three space dimensions, we get a three-dimensional complex in which the distance formula is still non-Euclidean, retaining the minus sign before the time-difference and therefore retaining the geometric character of its parent. But if we take our cross-section in such a way as to eliminate the time coordinate, this peculiarity disappears. The signs in the invariant expression are then all [161]plus, and the cross-section is in fact our familiar Euclidean three-space.

If we set up a surface geometry on a sphere, we find that the elimination of one dimension leaves us with a line-geometry that is still non-Euclidean since it pertains to the great circles of the sphere rather than to Euclidean straight lines. In shaking Minkowski’s continuum down into a three-dimensional one by eliminating any one of his coordinates, if we eliminate either the x, the y or the z, we have left a three-dimensional geometry in which the disturbing minus sign still occurs in the distance-formula, and which is therefore still non-Euclidean. If we omit the t, this does not occur. We see, then, that the time dimension is the disturbing factor, the one which gives to space-time its non-Euclidean character so far as the possession of curvature is concerned. And we see that this curvature is not the same in all directions, and in one direction is actually zero—whence the attempted analogy with a cylinder instead of with a sphere.

Many writers on relativity try to give the space-time continuum an appeal to our reason and a character of inevitableness by insisting on the lack of any fundamental distinction between space and time. The very expression for the space-time invariant denies this. Time is distinguishable from space. The three dimensions of space are quite indistinguishable—we can interchange them without affecting the formula, we can drop one out and never know which is gone. But the very formula singles out time as distinct from space, as inherently different in some way. It is not so inherently different as we have [162]always supposed; it is not sufficiently different to offer any obstacle to our thinking in terms of the four-dimensional continuum. But while we can group space and time together in this way, [this does not mean at all that space and time cease to differ. A cook may combine meat with potatoes and call the product hash, but meat and potatoes do not thereby become identical.]223

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Albert Einstein (2020). Einstein's Theories of Relativity and Gravitation. Urbana, Illinois: Project Gutenberg. Retrieved October 2022.

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/cache/epub/63372/pg63372-images.html