paint-brush

This story draft by @hgwells has not been reviewed by an editor, YET.

The Theory of Evolution

featured image - The Theory of Evolution
H.G. Wells HackerNoon profile picture

Text Book of Biology, Part 1: Vertebrata by H. G. Wells, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. The Theory of Evolution

The Theory of Evolution

Section 43. We have now considered our types, both from the standpoint of adult anatomy and from embryological data; and we have seen through the vertebrate series a common structure underlying wide diversity in external appearance and detailed anatomy. We have seen a certain intermediateness of structure in the frog, as compared with the rabbit and dog-fish, notably in the skull and skeleton, in the circulation, in the ear, and in the reduced myomeres; and we have seen that the rabbit passes in these respects, and in others, through dog-fish- and frog-like stages in its development, and this alone would be quite sufficient to suggest that the similarities of structure are due to other causes than a primordial adaptation to certain conditions of life.

Section 44. It has been suggested by very excellent people that these resemblances are due to some unexplained necessity of adherence to type, as though, the power that they assume created these animals originally, as they are now, coupled creative ability with a plentiful lack of ideas, and so perforce repeated itself with impotent variations. On the other hand, we have the supposition that these are "family likenesses," and the marks of a common ancestry. This is the opinion now accepted by all zoologists of repute.

Section 45. It must not be for a moment imagined that it is implied that rabbits are descended from frogs, or frogs from dog-fish, but that these three forms are remote cousins, derived from some ancient and far simpler progenitor. But since both rabbit and frog pass through phases like the adult condition of the dog-fish, it seems probable that the dog-fish has remained more like the primordial form than these two, and similarly, the frog than the rabbit.

Section 46. Hence we may infer that the mammals were the last of the three groups, of which we have taken types, to appear upon the earth, and that the fishes preceded, the amphibia. Workers in an entirely independent province, that of palaeontology, completely endorse this supposition. The first Vertebrata to appear in the fossil history of the world are fishes; fish spines and placoid scales (compare dog-fish) appear in the Ordovician rocks. In the coal measures come the amphibia; and in the Permo-triassic strata, reptile-like mammals. In the Devonian rocks, which come between the Silurian and the coal measures, we find very plentiful remains of certain fish called the dipnoi, of which group three genera still survive; they display, in numberless features of their anatomy, transitional characters between true fish and amphibia. Similarly, in the Permian come mammal-like reptiles, that point also downward to the amphibia. We find, therefore, the story told by the ovum written also in the rocks.

Section 47. Now, when this fact of a common ancestry is considered, it becomes necessary to explain how this gradual change of animal forms may have been brought about.

Section 48. Two subcontrary propositions hold of the young of any animal. It resembles in many points its parent. It differs in many points from its parent. The general scheme of structure and the greater lines of feature are parental, inherited; there are also novel and unique details that mark the individual. The first fact is the law of inheritance; the second, of variation.

Section 49. Now the parent or parents, since they live and breed, must be more or less, but sufficiently, adapted to their conditions of living-- more or less fitted to the needs of life. The variation in the young animal will be one of three kinds: it will fit the animal still better to the conditions under which its kind live, or it will be a change for the worse, or it is possible to imagine that the variation-- as in the colour variations of domesticated cats-- will affect its prospects in life very little. In the first case, the probability is that the new animal will get on in life, and breed, and multiply above the average; in the second, it is probable that, in the competition for food and other amenities of life, the disadvantage, whatever it is, under which the animal suffers will shorten its career, and abbreviate the tale of its offspring; while, in the third case, an average career may be expected. Hence, disregarding accidents, which may be eliminated from the problem by taking many cases, there is a continual tendency among the members of a species of animals in favour of the proportionate increase of the individuals most completely adapted to the conditions under which the species lives. That is, while the conditions remain unchanged, the animals, considered as one group, are continually more highly perfected to live under those conditions. And under changed conditions the specific form will also change.

Section 50. The idea of this process of change may be perhaps rendered more vivid by giving an imaginary concrete instance of its working. In the jungles of India, which preserve a state of things which has existed for immemorial years, we find the tiger, his stripes simulating jungle reeds, his noiseless approach learnt from nature in countless millions of lessons of success and failure, his perfectly powerful claws and execution methods; and, living in the same jungle, and with him as one of the conditions of life, are small deer, alert, swift, light of build, inconspicuous of colour, sharp of hearing, keen-eyed, keen-scented-- because any downward variation from these attributes means swift and certain death. To capture the deer is a condition, of the tiger's life, to escape the tiger a condition of the deer's; and they play a great contest under these conditions, with life as the stake. The most alert deer almost always escape; the least so, perish.

Section 51. But conditions may alter. For instance, while most of these deer still live in the jungle with tigers, over a considerable area of their habitat, some change may be at work that thins the jungle, destroys the tigers in it, and brings in, let us say, wolves, as an enemy to the deer, instead of tigers. Now, against the wolves, which do not creep, but hunt noisily, and which do not spring suddenly upon prey, but follow by scent, and run it down in packs, keen eyes, sharp ears, acute perceptions, will be far less important than endurance in running. The deer, under the new conditions, will need coarser and more powerful limbs, and a larger chest; it will be an advantage to be rough and big, instead, of frail and inconspicuous, and the ears and eyes need not be so large. The old refinements will mean weakness and death; any variation along the line of size and coarseness will be advantageous. Slight and delicate deer will be continually being killed, rougher and stronger deer continually escaping. And so gradually, under the new circumstances, if they are not sufficient to exterminate the species, the finer characteristics will be eliminated, and a new variety of our old jungle deer will arise, and, if the separation and contrast of the conditions is sufficiently great and permanent, we may, at last, in the course of ages, get a new kind of deer specifically different in its limbs, body, sense organs, colour, and instincts, from the deer that live in the jungle. And these latter will, on their side, be still continually more perfected to the jungle life they are leading.

Section 52. Take a wider range of time and vaster changes of condition than this, and it becomes possible to imagine how the social cattle-- with their united front against an enemy, fierce onslaught, and their general adaptation to prairie life-- have differentiated from the ancestors of the slight and timid deer; how the patient camel, with his storage hump, water storage, and feet padded against hot sand, has been moulded by the necessity of desert life from the same ancestral form. And so we may work back, and link these forms, and other purely vegetarian feeders, with remoter cousins, the ancestral hogs. Working in this way, we presently get a glimpse of a possible yet remoter connection of all these hoofed and mainly vegetarian animals, with certain "central types" that carry us across to the omnivorous, and, in some cases, almost entirely vegetarian bears, and to the great and prosperous family of clawed, meat-eaters. And thus we elucidate, at last, a thread of blood relationship between the, at present, strongly contrasted and antagonistic deer and tiger, and passing thence into still wider generalizations, it would be possible to connect the rabbit playing in the sunshine, with the frog in the ditch, the dog-fish in the sea-waters and the lancelet in the sand. For the transition from dog-fish to rabbit differs from the transition from one species of deer to another only in magnitude: it is an affair of vast epochs instead merely of thousands of years.

Section 53. It would, however, be beyond the design of this book to carry our demonstration of the credibility of a common ancestry of animals still further back. But we may point out here that it is not a theory, based merely upon one set of facts, but one singularly rich in confirmation. We can construct, on purely anatomical grounds, a theoretical pedigree. Now the independent study of embryology suggests exactly the same pedigree, and the entirely independent testimony of palaeontology is precisely in harmony with the already confirmed theory arrived at in this way.

Section 54. It is in the demonstration of this wonderful unity in life, only the more confirmed the more exhaustive our analysis becomes, that the educational value and human interest of biology chiefly lies. In the place of disconnected species of animals, arbitrarily created, and a belief in the settled inexplicable, the student finds an enlightening realization of uniform and active causes beneath an apparent diversity. And the world is not made and dead like a cardboard model or a child's toy, but a living equilibrium; and every day and every hour, every living thing is being weighed in the balance and found sufficient or wanting.

Our little book is the merest beginning in zoology; we have stated one or two groups of facts and made one or two suggestions. The great things of the science of Darwin, Huxley, Wallace, and Balfour remain mainly untold. In the book of nature there are written, for instance, the triumphs of survival, the tragedy of death and extinction, the tragi-comedy of degradation and inheritance, the gruesome lesson of parasitism, and the political satire of colonial organisms. Zoology is, indeed, a philosophy and a literature to those who can read its symbols. In the contemplation of beauty of form and of mechanical beauty, and in the intellectual delight of tracing and elucidating relationships and criticising appearances, there is also for many a great reward in zoological study. With an increasing knowledge of the facts of the form of life, there gradually appears to the student the realization of an entire unity shaped out by their countless, and often beautiful, diversity. And at last, in the place of the manifoldness of a fair or a marine store, the student of science perceives the infinite variety of one consistent and comprehensive Being-- a realization to which no other study leads him at present so surely.

To the student who feels inclined to amplify this brief outline of Vertebrate Anatomy, we may mention the following books: Wiedersheim's and Parker's Vertebrates, Huxley's Anatomy of the Vertebrata, Flower's Osteology of the Mammalia, Wallace's Distribution, Nicholson and Lyddeker's Palaeontology (Volume 2), the summaries in Rolleston's Forms of Animal Life (where a bibliography will be found), and Balfour's Embryology. But reading without practical work is a dull and unprofitable method of study.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. H. G. Wells (2007). Text Book of Biology, Part 1: Vertebrata. Urbana, Illinois: Project Gutenberg. Retrieved October 2022, from https://www.gutenberg.org/files/21781/21781-h/21781-h.htm

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.

L O A D I N G
. . . comments & more!

About Author

H.G. Wells HackerNoon profile picture
H.G. Wells@hgwells
English novelist, journalist, sociologist, and historian best known for such science fiction novels as The Time Machine.

Topics

Around The Web...