Authors:
(1) Albert Gu, Machine Learning Department, Carnegie Mellon University with Equal contribution ([email protected]);
(2) Tri Dao, Department of Computer Science, Princeton University with Equal contribution ([email protected]).
Table of Links
3 Selective State Space Models and 3.1 Motivation: Selection as a Means of Compression
3.2 Improving SSMs with Selection
3.3 Efficient Implementation of Selective SSMs
3.4 A Simplifed SSM Architecture
3.5 Properties of Selection Mechanisms
4 Empirical Evaluation and 4.1 Synthetic Tasks
4.4 Audio Modeling and Generation
4.5 Speed and Memory Benchmarks
6 Conclusion, Acknowledgments and References
A Discussion: Selection Mechanism
B Related Work and B.1 S4 Variants and Derivatives
B.4 Linear Attention and B.5 Long Context Models
D Hardware-aware Algorithm For Selective SSMs
E Experimental Details and Additional Results and E.1 Synthetic Tasks
6 Conclusion
We introduce a selection mechanism to structured state space models, allowing them to perform context-dependent reasoning while scaling linearly in sequence length. When incorporated into a simple attention-free architecture, Mamba achieves state-of-the-art results on a diverse set of domains, where it matches or exceeds the performance of strong Transformer models. We are excited about the broad applications of selective state space models to build foundation models for different domains, especially in emerging modalities requiring long context such as genomics, audio, and video. Our results suggest that Mamba is a strong candidate to be a general sequence model backbone.
Acknowledgments
We thank Karan Goel, Arjun Desai, and Kush Bhatia for helpful feedback on the draft.
References
This paper is available on arxiv under CC BY 4.0 DEED license.