paint-brush

This story draft by @einstein has not been reviewed by an editor, YET.

What the Postulate Really Does

featured image - What the Postulate Really Does
Albert Einstein HackerNoon profile picture

Einstein's Theories of Relativity and Gravitation by Albert Einstein, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. What the Postulate Really Does

What the Postulate Really Does

Moreover, in the absence of an assumption covering the ground, we shall not know which of the alternatives (a), (b), (c) holds. But when one holds in a single case it holds permanently, as Saccheri and Lobatchewsky both showed. So we cannot proceed on this indefinite basis; we must know which one is to hold. Without the parallel postulate or a substitute therefor that shall tell us the same thing or tell us something different, we have not got a categorical set of assumptions—we cannot build a geometry at all. That is why Euclid had to have his parallel postulate before he could proceed. That is why his successors had to have an assumption equivalent to his.

The reason why it took so long for this to percolate into the understanding of the mathematicians was that they were thinking, not in terms of the modern geometry and about undefined elements; but in terms of the old geometry and about strictly defined and circumscribed elements. If we understand what is meant by Euclidean line and plane, of course the parallel postulate, to use the old geometer’s word, is true—of course, to adopt the modern viewpoint, if we agree to employ an element to which that assumption applies, the assumption is [133]realized. The very fact of accepting the “straight” line and the “flat” plane of Euclid constitutes acceptance of his parallel postulate—the only thing that can separate his geometry from other geometries. But of course we can’t prove it; the prior postulates which we would have to use in such an attempt apply where it does not apply, and hence it cannot possibly be consequences of.

To all this the classical Euclidean rejoins that we seem to have in mind elements of some sort to which, with one reservation, his postulates apply. He wants to know what these elements look like. We can, and must, produce them—else our talk about generality is mere drivel. But we must take care that the Euclidean geometer does not try to apply to our elements the notions of straightness and flatness which inhere in the parallel postulate. We cannot satisfy and defy that postulate at the same time. If we do not insist on this point, we shall find that we are reading non-Euclidean properties into Euclidean geometry, and interpreting the elements of the latter as straight lines that are not straight, flat planes that are not flat. It is not the mission of non-Euclidean geometry thus to deny the possibility of Euclidean geometry; it merely demands a place of equal honor.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Albert Einstein (2020). Einstein's Theories of Relativity and Gravitation. Urbana, Illinois: Project Gutenberg. Retrieved October 2022.

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/cache/epub/63372/pg63372-images.html