This story draft by @einstein has not been reviewed by an editor, YET.
Einstein's Theories of Relativity and Gravitation by Albert Einstein, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. The Relativity of Uniform Motion
Classical Ideas on the Subject; the Ether and the Apparent Possibility of Absolute Motion; the Michelson-Morley Experiment and the Final Negation of This Possibility
BY VARIOUS CONTRIBUTORS AND THE EDITOR
When we speak of a body as being “in motion,” we mean that this body is changing its position “in space.” Now it is clear that the position of an object can only be determined with reference to other objects: in order to describe the place of a material thing we must, for example, state its distances from other things. If there were no such bodies of reference, the words “position in space” would have no definite meaning for us.]24 [The number of such external bodies of reference which it is necessary to cite in order to define completely the position of a given body in space depends upon the character of the space dealt with. We have seen that when we visualize the space of our experience as a surface of any character, two citations are sufficient; and that when we conceive of it as surrounding us in three dimensions we require three. It will be realized that the mathematician [47]is merely meeting this requirement when he sets up his system of coordinate axes to serve as a reference frame.]*
[What is true of “place” must be true also of “motion,” since the latter is nothing but change of place. In fact, it would be impossible to ascribe a state of motion or of rest to a body poised all alone in empty space. Whether a body is to be regarded as resting or as moving, and if the latter at what speed, depends entirely upon the objects to which we refer its positions in space.]24 [As Einstein sits at his desk he appears to us to be at rest; but we know that he is moving with the rotation of the earth on its axis, with the earth in its orbit about the sun, and with the solar system in its path through space—a complex motion of which the parts or the whole can be detected only by reference to appropriately chosen ones of the heavenly bodies. No mechanical test has ever been devised which will detect this motion,]182 [if we reserve for discussion in its proper place the Foucault pendulum experiment which will reveal the axial rotation of our globe.]* [No savage, if he were to “stand still,” could be convinced that he was moving with a very high velocity or in fact that he was moving at all.]30 [You drop a coin straight down a ship’s side: from the land its path appears parabolic; to a polar onlooker it whirls circle-wise; to dwellers on Mars it darts spirally about the sun; to a stellar observer it gyrates through the sky]263 [in a path of many complications. To you it drops in a straight line from the deck to the sea.]* [Yet its various tracks in ship-space, sea-space, earth-space, sun-space, star-space, are all [48]equally real,]263 [and the one which will be singled out for attention depends entirely upon the observer, and the objects to which he refers the motion.]* [The earth moves in the solar system, which is itself approaching a distant star-cluster. But we cannot say whether we are moving toward the cluster, or the cluster toward us,]18 [or both, or whether we are conducting a successful stern chase of it, or it of us,]* [unless we have in mind some third body with reference to which the motions of earth and star-cluster are measured.]18 [And if we have this, the measurements made with reference to it are of significance with regard to it, rather than with regard to the earth and the star-cluster alone.]*
[We can express all this by saying “All motions are relative; there is no such thing as absolute motion.” This line of argument has in fact been followed by many natural philosophers. But is its result in agreement with actual experience? Is it really impossible to distinguish between rest and motion of a body if we do not take into consideration its relations to other objects? In fact it can easily be seen that, at least in many cases, no such distinction is possible.
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.
This book is part of the public domain. Albert Einstein (2020). Einstein's Theories of Relativity and Gravitation. Urbana, Illinois: Project Gutenberg. Retrieved October 2022.
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/cache/epub/63372/pg63372-images.html