This story draft by @einstein has not been reviewed by an editor, YET.
Einstein's Theories of Relativity and Gravitation by Albert Einstein, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. Terms We Cannot Define
But the scientist who attempts to carry out this ideal system of defining everything in terms of what precedes meets one obstacle which he cannot surmount directly. Even a layman can construct a passable definition of a complex thing like a parallelopiped, in terms of simpler concepts like point, line, plane and parallel. But who shall define point in terms of something simpler and something which precedes point in the formulation of geometry? The scientist is embarrassed, not in handling the complicated later parts of his work, but in the very beginning, [114]in dealing with the simplest concepts with which he has to deal.
Suppose a dictionary were to be compiled with the definitions arranged in logical rather than alphabetical order: every word to be defined by the use only of words that have already been defined. The further back toward the beginning we push this project, the harder it gets. Obviously we can never define the first word, or the second, save as synonymous with the first. In fact we should need a dozen words, more or less, to start with—God-given words which we cannot define and shall not try to define, but of which we must agree that we know the significance. Then we have tools for further procedure; we can start with, say, the thirteenth word and define all the rest of the words in the language, in strictly logical fashion.
What we have said about definitions applies equally to statements of fact, of the sort which are going to constitute the body of our science. In the absence of simpler facts to cite as authority, we shall never be able to prove anything, however simple this may itself be; and in fact the simpler it be, the harder it is to find something simpler to underlie it. If we are to have a logical structure of any sort, we must begin by laying down certain terms which we shall not attempt to define, and certain statements which we shall not try to prove. Mathematics, physics, chemistry—in the large and in all their many minor fields—all these must start somewhere. Instead of deceiving ourselves as to the circumstances surrounding their start, we prefer to be quite frank in recognizing that they start where we decide [115]to start them. If we don’t like one set of undefined terms as the foundation, by all means let us try another. But always we must have such a set.
The classical geometer sensed the difficulty of defining his first terms. But he supposed that he had met it when he defined these in words free of technical significance. “A point is that which has position without size” seemed to him an adequate definition, because “position” and “size” are words of the ordinary language with which we may all be assumed familiar. But today we feel that “position” and “size” represent ideas that are not necessarily more fundamental than those of “line” and “point,” and that such a definition begs the question. We get nowhere by replacing the undefined terms “point” and “line” and “plane,” which really everybody understands, by other undefined terms which nobody understands any better.
In handling the facts that it was inconvenient to prove, the classical geometer came closer to modern practice. He laid down at the beginning a few statements which he called “axioms,” and which he considered to be so self-evident that demonstration was superfluous. That the term “self-evident” left room for a vast amount of ambiguity appears to have escaped him altogether. His axioms were axioms solely because they were obviously true.
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.
This book is part of the public domain. Albert Einstein (2020). Einstein's Theories of Relativity and Gravitation. Urbana, Illinois: Project Gutenberg. Retrieved October 2022.
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/cache/epub/63372/pg63372-images.html