Insectivorous Plants by Charles Darwin, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. ON THE SENSITIVENESS OF THE LEAVES, AND ON THE LINES OF TRANSMISSION OF THE MOTOR IMPULSE
Glands and summits of the tentacles alone sensitive—Transmission of the motor impulse down the pedicels of the tentacles, and across the blade of the leaf—Aggregation of the protoplasm, a reflex action—First discharge of the motor impulse sudden—Direction of the movements of the tentacles—Motor impulse transmitted through the cellular tissue— Mechanism of the movements—Nature of the motor impulse—Re-expansion of the tentacles.
We have seen in the previous chapters that many widely different stimulants, mechanical and chemical, excite the movement of the tentacles, as well as of the blade of the leaf; and we must now consider, firstly, what are the points which are irritable or sensitive, and secondly how the motor impulse is transmitted from one point to another. The glands are almost exclusively the seat of irritability, yet this irritability must extend for a very short distance below them; for when they were cut off with a sharp pair of scissors without being themselves touched, the tentacles often became inflected. These headless tentacles frequently re-expanded; and when afterwards drops of the two most powerful known stimulants were placed on the cut-off ends, no effect was produced. Nevertheless these headless tentacles are capable of subsequent inflection if excited by an impulse sent from the disc. I succeeded on several occasions in crushing glands between fine pincers, but this did not excite any movement; nor did raw meat and salts of ammonia, when placed on such crushed glands. [page 230] It is probable that they were killed so instantly that they were not able to transmit any motor impulse; for in six observed cases (in two of which however the gland was quite pinched off) the protoplasm within the cells of the tentacles did not become aggregated; whereas in some adjoining tentacles, which were inflected from having been roughly touched by the pincers, it was well aggregated. In like manner the protoplasm does not become aggregated when a leaf is instantly killed by being dipped into boiling water. On the other hand, in several cases in which tentacles became inflected after their glands had been cut off with sharp scissors, a distinct though moderate degree of aggregation supervened.
The pedicels of the tentacles were roughly and repeatedly rubbed; raw meat or other exciting substances were placed on them, both on the upper surface near the base and elsewhere, but no distinct movement ensued. Some bits of meat, after being left for a considerable time on the pedicels, were pushed upwards, so as just to touch the glands, and in a minute the tentacles began to bend. I believe that the blade of the leaf is not sensitive to any stimulant. I drove the point of a lancet through the blades of several leaves, and a needle three or four times through nineteen leaves: in the former case no movement ensued; but about a dozen of the leaves which were repeatedly pricked had a few tentacles irregularly inflected. As, however, their backs had to be supported during the operation, some of the outer glands, as well as those on the disc, may have been touched; and this perhaps sufficed to cause the slight degree of movement observed. Nitschke*says
* ‘Bot. Zeitung,’ 1860, p. 234. [page 231]
that cutting and pricking the leaf does not excite movement. The petiole of the leaf is quite insensible.
The backs of the leaves bear numerous minute papillae, which do not secrete, but have the power of absorption. These papillae are, I believe, rudiments of formerly existing tentacles together with their glands. Many experiments were made to ascertain whether the backs of the leaves could be irritated in any way, thirty-seven leaves being thus tried. Some were rubbed for a long time with a blunt needle, and drops of milk and other exciting fluids, raw meat, crushed flies, and various substances, placed on others. These substances were apt soon to become dry, showing that no secretion had been excited. Hence I moistened them with saliva, solutions of ammonia, weak hydrochloric acid, and frequently with the secretion from the glands of other leaves. I also kept some leaves, on the backs of which exciting objects had been placed, under a damp bell-glass; but with all my care I never saw any true movement. I was led to make so many trials because, contrary to my previous experience, Nitschke states* that, after affixing objects to the backs of leaves by the aid of the viscid secretion, he repeatedly saw the tentacles (and in one instance the blade) become reflexed. This movement, if a true one, would be most anomalous; for it implies that the tentacles receive a motor impulse from an unnatural source, and have the power of bending in a direction exactly the reverse of that which is habitual to them; this power not being of the least use to the plant, as insects cannot adhere to the smooth backs of the leaves.
I have said that no effect was produced in the above
* ‘Bot. Zeitung.’ 1860, p. 437. [page 232]
cases; but this is not strictly true, for in three instances a little syrup was added to the bits of raw meat on the backs of leaves, in order to keep them damp for a time; and after 36 hrs. there was a trace of reflexion in the tentacles of one leaf, and certainly in the blade of another. After twelve additional hours, the glands began to dry, and all three leaves seemed much injured. Four leaves were then placed under a bell-glass, with their footstalks in water, with drops of syrup on their backs, but without any meat. Two of these leaves, after a day, had a few tentacles reflexed. The drops had now increased considerably in size, from having imbibed moisture, so as to trickle down the backs of the tentacles and footstalks. On the second day, one leaf had its blade much reflexed; on the third day the tentacles of two were much reflexed, as well as the blades of all four to a greater or less degree. The upper side of one leaf, instead of being, as at first, slightly concave, now presented a strong convexity upwards. Even on the fifth day the leaves did not appear dead. Now, as sugar does not in the least excite Drosera, we may safely attribute the reflexion of the blades and tentacles of the above leaves to exosmose from the cells which were in contact with the syrup, and their consequent contraction. When drops of syrup are placed on the leaves of plants with their roots still in damp earth, no inflection ensues, for the roots, no doubt, pump up water as quickly as it is lost by exosmose. But if cut-off leaves are immersed in syrup, or in any dense fluid, the tentacles are greatly, though irregularly, inflected, some of them assuming the shape of corkscrews; and the leaves soon become flaccid. If they are now immersed in a fluid of low specific gravity, the tentacles re-expand. From these [page 233] facts we may conclude that drops of syrup placed on the backs of leaves do not act by exciting a motor impulse which is transmitted to the tentacles; but that they cause reflexion by inducing exosmose. Dr. Nitschke used the secretion for sticking insects to the backs of the leaves; and I suppose that he used a large quantity, which from being dense probably caused exosmose. Perhaps he experimented on cut-off leaves, or on plants with their roots not supplied with enough water.
As far, therefore, as our present knowledge serves, we may conclude that the glands, together with the immediately underlying cells of the tentacles, are the exclusive seats of that irritability or sensitiveness with which the leaves are endowed. The degree to which a gland is excited can be measured only by the number of the surrounding tentacles which are inflected, and by the amount and rate of their movement. Equally vigorous leaves, exposed to the same temperature (and this is an important condition), are excited in different degrees under the following circumstances. A minute quantity of a weak solution produces no effect; add more, or give a rather stronger solution, and the tentacles bend. Touch a gland once or twice, and no movement follows; touch it three or four times, and the tentacle becomes inflected. But the nature of the substance which is given is a very important element: if equal-sized particles of glass (which acts only mechanically), of gelatine, and raw meat, are placed on the discs of several leaves, the meat causes far more rapid, energetic, and widely extended movement than the two former substances. The number of glands which are excited also makes a great difference in the result: place a bit of meat on one or two of the discal [page 234] glands, and only a few of the immediately surrounding short tentacles are inflected; place it on several glands, and many more are acted on; place it on thirty or forty, and all the tentacles, including the extreme marginal ones, become closely inflected. We thus see that the impulses proceeding from a number of glands strengthen one another, spread farther, and act on a larger number of tentacles, than the impulse from any single gland.
Transmission of the Motor Impulse.—In every case the impulse from a gland has to travel for at least a short distance to the basal part of the tentacle, the upper part and the gland itself being merely carried by the inflection of the lower part. The impulse is thus always transmitted down nearly the whole length of the pedicel. When the central glands are stimulated, and the extreme marginal tentacles become inflected, the impulse is transmitted across half the diameter of the disc; and when the glands on one side of the disc are stimulated, the impulse is transmitted across nearly the whole width of the disc. A gland transmits its motor impulse far more easily and quickly down its own tentacle to the bending place than across the disc to neighbouring tentacles. Thus a minute dose of a very weak solution of ammonia, if given to one of the glands of the exterior tentacles, causes it to bend and reach the centre; whereas a large drop of the same solution, given to a score of glands on the disc, will not cause through their combined influence the least inflection of the exterior tentacles. Again, when a bit of meat is placed on the gland of an exterior tentacle, I have seen movement in ten seconds, and repeatedly within a minute; but a much larger bit placed on several glands on the disc does not cause [page 235] the exterior tentacles to bend until half an hour or even several hours have elapsed.
The motor impulse spreads gradually on all sides from one or more excited glands, so that the tentacles which stand nearest are always first affected. Hence, when the glands in the centre of the disc are excited, the extreme marginal tentacles are the last inflected. But the glands on different parts of the leaf transmit their motor power in a somewhat different manner. If a bit of meat be placed on the long-headed gland of a marginal tentacle, it quickly transmits an impulse to its own bending portion; but never, as far as I have observed, to the adjoining tentacles; for these are not affected until the meat has been carried to the central glands, which then radiate forth their conjoint impulse on all sides. On four occasions leaves were prepared by removing some days previously all the glands from the centre, so that these could not be excited by the bits of meat brought to them by the inflection of the marginal tentacles; and now these marginal tentacles re-expanded after a time without any other tentacle being affected. Other leaves were similarly prepared, and bits of meat were placed on the glands of two tentacles in the third row from the outside, and on the glands of two tentacles in the fifth row. In these four cases the impulse was sent in the first place laterally, that is, in the same concentric row of tentacles, and then towards the centre; but not centrifugally, or towards the exterior tentacles. In one of these cases only a single tentacle on each side of the one with meat was affected. In the three other cases, from half a dozen to a dozen tentacles, both laterally and towards the centre, were well inflected or sub-inflected. Lastly, in [page 236] ten other experiments, minute bits of meat were placed on a single gland or on two glands in the centre of the disc. In order that no other glands should touch the meat, through the inflection of the closely adjoining short tentacles, about half a dozen glands had been previously removed round the selected ones. On eight of these leaves from sixteen to twenty-five of the short surrounding tentacles were inflected in the course of one or two days; so that the motor impulse radiating from one or two of the discal glands is able to produce this much effect. The tentacles which had been removed are included in the above numbers; for, from standing so close, they would certainly have been affected. On the two remaining leaves, almost all the short tentacles on the disc were inflected. With a more powerful stimulus than meat, namely a little phosphate of lime moistened with saliva, I have seen the inflection spread still farther from a single gland thus treated; but even in this case the three or four outer rows of tentacles were not affected. From these experiments it appears that the impulse from a single gland on the disc acts on a greater number of tentacles than that from a gland of one of the exterior elongated tentacles; and this probably follows, at least in part, from the impulse having to travel a very short distance down the pedicels of the central tentacles, so that it is able to spread to a considerable distance all round.
Whilst examining these leaves, I was struck with the fact that in six, perhaps seven, of them the tentacles were much more inflected at the distal and proximal ends of the leaf (i.e. towards the apex and base) than on either side; and yet the tentacles on the sides stood as near to the gland where the bit of meat lay as did those at the two ends. It thus appeared as [page 237] if the motor impulse was transmitted from the centre across the disc more readily in a longitudinal than in a transverse direction; and as this appeared a new and interesting fact in the physiology of plants, thirty-five fresh experiments were made to test its truth. Minute bits of meat were placed on a single gland or on a few glands, on the right or left side of the discs of eighteen leaves; other bits of the same size being placed on the distal or proximal ends of seventeen other leaves. Now if the motor impulse were transmitted with equal force or at an equal rate through the blade in all directions, a bit of meat placed at one side or at one end of the disc ought to affect equally all the tentacles situated at an equal distance from it; but this certainly is not the case. Before giving the general results, it may be well to describe three or four rather unusual cases.
[(1) A minute fragment of a fly was placed on one side of the disc, and after 32 m. seven of the outer tentacles near the fragment were inflected; after 10 hrs. several more became so, and after 23 hrs. a still greater number; and now the blade of the leaf on this side was bent inwards so as to stand up at right angles to the other side. Neither the blade of the leaf nor a single tentacle on the opposite side was affected; the line of separation between the two halves extending from the footstalk to the apex. The leaf remained in this state for three days, and on the fourth day began to re-expand; not a single tentacle having been inflected on the opposite side.
(2) I will here give a case not included in the above thirty-five experiments. A small fly was found adhering by its feet to the left side of the disc. The tentacles on this side soon closed in and killed the fly; and owing probably to its struggle whilst alive, the leaf was so much excited that in about 24 hrs. all the tentacles on the opposite side became inflected; but as they found no prey, for their glands did not reach the fly, they re-expanded in the course of 15 hrs.; the tentacles on the left side remaining clasped for several days.
(3) A bit of meat, rather larger than those commonly used, [page 238] was placed in a medial line at the basal end of the disc, near the footstalk; after 2 hrs. 30 m. some neighbouring tentacles were inflected; after 6 hrs. the tentacles on both sides of the footstalk, and some way up both sides, were moderately inflected; after 8 hrs. the tentacles at the further or distal end were more inflected than those on either side; after 23 hrs. the meat was well clasped by all the tentacles, excepting by the exterior ones on the two sides.
(4) Another bit of meat was placed at the opposite or distal end of another leaf, with exactly the same relative results.
(5) A minute bit of meat was placed on one side of the disc; next day the neighbouring short tentacles were inflected, as well as in a slight degree three or four on the opposite side near the footstalk. On the second day these latter tentacles showed signs of re-expanding, so I added a fresh bit of meat at nearly the same spot, and after two days some of the short tentacles on the opposite side of the disc were inflected. As soon as these began to re-expand, I added another bit of meat, and next day all the tentacles on the opposite side of the disc were inflected towards the meat; whereas we have seen that those on the same side were affected by the first bit of meat which was given.]
Now for the general results. Of the eighteen leaves on which bits of meat were placed on the right or left sides of the disc, eight had a vast number of tentacles inflected on the same side, and in four of them the blade itself on this side was likewise inflected; whereas not a single tentacle nor the blade was affected on the opposite side. These leaves presented a very curious appearance, as if only the inflected side was active, and the other paralysed. In the remaining ten cases, a few tentacles became inflected beyond the medial line, on the side opposite to that where the meat lay; but, in some of these cases, only at the proximal or distal ends of the leaves. The inflection on the opposite side always occurred considerably after that on the same side, and in one instance not until the fourth day. We have also seen [page 239] with No. 5 that bits of meat had to be added thrice before all the short tentacles on the opposite side of the disc were inflected.
The result was widely different when bits of meat were placed in a medial line at the distal or proximal ends of the disc. In three of the seventeen experiments thus made, owing either to the state of the leaf or to the smallness of the bit of meat, only the immediately adjoining tentacles were affected; but in the other fourteen cases the tentacles at the opposite end of the leaf were inflected, though these were as distant from where the meat lay as were those on one side of the disc from the meat on the opposite side. In some of the present cases the tentacles on the sides were not at all affected, or in a less degree, or after a longer interval of time, than those at the opposite end. One set of experiments is worth giving in fuller detail. Cubes of meat, not quite so small as those usually employed, were placed on one side of the discs of four leaves, and cubes of the same size at the proximal or distal end of four other leaves. Now, when these two sets of leaves were compared after an interval of 24 hrs., they presented a striking difference. Those having the cubes on one side were very slightly affected on the opposite side; whereas those with the cubes at either end had almost every tentacle at the opposite end, even the marginal ones, closely inflected. After 48 hrs. the contrast in the state of the two sets was still great; yet those with the meat on one side now had their discal and submarginal tentacles on the opposite side somewhat inflected, this being due to the large size of the cubes. Finally we may conclude from these thirty-five experiments, not to mention the six or seven previous ones, that the motor impulse is transmitted from any single gland [page 240] or small group of glands through the blade to the other tentacles more readily and effectually in a longitudinal than in a transverse direction.
As long as the glands remain excited, and this may last for many days, even for eleven, as when in contact with phosphate of lime, they continue to transmit a motor impulse to the basal and bending parts of their own pedicels, for otherwise they would re-expand. The great difference in the length of time during which tentacles remain inflected over inorganic objects, and over objects of the same size containing soluble nitrogenous matter, proves the same fact. But the intensity of the impulse transmitted from an excited gland, which has begun to pour forth its acid secretion and is at the same time absorbing, seems to be very small compared with that which it transmits when first excited. Thus, when moderately large bits of meat were placed on one side of the disc, and the discal and sub-marginal tentacles on the opposite side became inflected, so that their glands at last touched the meat and absorbed matter from it, they did not transmit any motor influence to the exterior rows of tentacles on the same side, for these never became inflected. If, however, meat had been placed on the glands of these same tentacles before they had begun to secrete copiously and to absorb, they undoubtedly would have affected the exterior rows. Nevertheless, when I gave some phosphate of lime, which is a most powerful stimulant, to several submarginal tentacles already considerably inflected, but not yet in contact with some phosphate previously placed on two glands in the centre of the disc, the exterior tentacles on the same side were acted on.
When a gland is first excited, the motor impulse is discharged within a few seconds, as we know from the [page 241] bending of the tentacle; and it appears to be discharged at first with much greater force than afterwards. Thus, in the case above given of a small fly naturally caught by a few glands on one side of a leaf, an impulse was slowly transmitted from them across the whole breadth of the leaf, causing the opposite tentacles to be temporarily inflected, but the glands which remained in contact with the insect, though they continued for several days to send an impulse down their own pedicels to the bending place, did not prevent the tentacles on the opposite side from quickly re-expanding; so that the motor discharge must at first have been more powerful than afterwards.
When an object of any kind is placed on the disc, and the surrounding tentacles are inflected, their glands secrete more copiously and the secretion becomes acid, so that some influence is sent to them from the discal glands. This change in the nature and amount of the secretion cannot depend on the bending of the tentacles, as the glands of the short central tentacles secrete acid when an object is placed on them, though they do not themselves bend. Therefore I inferred that the glands of the disc sent some influence up the surrounding tentacles to their glands, and that these reflected back a motor impulse to their basal parts; but this view was soon proved erroneous. It was found by many trials that tentacles with their glands closely cut off by sharp scissors often become inflected and again re-expand, still appearing healthy. One which was observed continued healthy for ten days after the operation. I therefore cut the glands off twenty-five tentacles, at different times and on different leaves, and seventeen of these soon became inflected, and afterwards re-expanded. The re-expansion commenced in about [page 242] 8 hrs. or 9 hrs., and was completed in from 22 hrs. to 30 hrs. from the time of inflection. After an interval of a day or two, raw meat with saliva was placed on the discs of these seventeen leaves, and when observed next day, seven of the headless tentacles were inflected over the meat as closely as the uninjured ones on the same leaves; and an eighth headless tentacle became inflected after three additional days. The meat was removed from one of these leaves, and the surface washed with a little stream of water, and after three days the headless tentacle re-expanded for the second time. These tentacles without glands were, however, in a different state from those provided with glands and which had absorbed matter from the meat, for the protoplasm within the cells of the former had undergone far less aggregation. From these experiments with headless tentacles it is certain that the glands do not, as far as the motor impulse is concerned, act in a reflex manner like the nerve-ganglia of animals.
But there is another action, namely that of aggregation, which in certain cases may be called reflex, and it is the only known instance in the vegetable kingdom. We should bear in mind that the process does not depend on the previous bending of the tentacles, as we clearly see when leaves are immersed in certain strong solutions. Nor does it depend on increased secretion from the glands, and this is shown by several facts, more especially by the papillae, which do not secrete, yet undergoing aggregation, if given carbonate of ammonia or an infusion of raw meat. When a gland is directly stimulated in any way, as by the pressure of a minute particle of glass, the protoplasm within the cells of the gland first becomes aggregated, then that in the cells immediately beneath the gland, and so lower and lower down the tentacles to their bases;— [page 243] that is, if the stimulus has been sufficient and not injurious. Now, when the glands of the disc are excited, the exterior tentacles are affected in exactly the same manner: the aggregation always commences in their glands, though these have not been directly excited, but have only received some influence from the disc, as shown by their increased acid secretion. The protoplasm within the cells immediately beneath the glands are next affected, and so downwards from cell to cell to the bases of the tentacles. This process apparently deserves to be called a reflex action, in the same manner as when a sensory nerve is irritated, and carries an impression to a ganglion which sends back some influence to a muscle or gland, causing movement or increased secretion; but the action in the two cases is probably of a widely different nature. After the protoplasm in a tentacle has been aggregated, its redissolution always begins in the lower part, and slowly travels up the pedicel to the gland, so that the protoplasm last aggregated is first redissolved. This probably depends merely on the protoplasm being less and less aggregated, lower and lower down in the tentacles, as can be seen plainly when the excitement has been slight. As soon, therefore, as the aggregating action altogether ceases, redissolution naturally commences in the less strongly aggregated matter in the lowest part of the tentacle, and is there first completed.
Direction of the Inflected Tentacles.—When a particle of any kind is placed on the gland of one of the outer tentacles, this invariably moves towards the centre of the leaf; and so it is with all the tentacles of a leaf immersed in any exciting fluid. The glands of the exterior tentacles then form a ring round the middle part of the disc, as shown in a previous figure (fig. 4, [page 244] p. 10). The short tentacles within this ring still retain their vertical position, as they likewise do when a large object is placed on their glands, or when an insect is caught by them. In this latter case we can see that the inflection of the short central tentacles would be useless, as their glands are already in contact with their prey.
FIG. 10. (Drosera rotundifolia.) Leaf (enlarged) with the tentacles inflected over a bit of meat placed on one side of the disc.
The result is very different when a single gland on one side of the disc is excited, or a few in a group. These send an impulse to the surrounding tentacles, which do not now bend towards the centre of the leaf, but to the point of excitement. We owe this capital observation to Nitschke,* and since reading his paper a few years ago, I have repeatedly verified it. If a minute bit of meat be placed by the aid of a needle on a single gland, or on three or four together, halfway between the centre and the circumference of the disc, the directed movement of the surrounding tentacles is well exhibited. An accurate drawing of a leaf with meat in this position is here reproduced (fig. 10), and we see the tentacles, including some of the exterior ones, accurately directed to the point where the meat lay. But a much better
* ‘Bot. Zeitung,’ 1860, p. 240. [page 245]
plan is to place a particle of the phosphate of lime moistened with saliva on a single gland on one side of the disc of a large leaf, and another particle on a single gland on the opposite side. In four such trials the excitement was not sufficient to affect the outer tentacles, but all those near the two points were directed to them, so that two wheels were formed on the disc of the same leaf; the pedicels of the tentacles forming the spokes, and the glands united in a mass over the phosphate representing the axles. The precision with which each tentacle pointed to the particle was wonderful; so that in some cases I could detect no deviation from perfect accuracy. Thus, although the short tentacles in the middle of the disc do not bend when their glands are excited in a direct manner, yet if they receive a motor impulse from a point on one side, they direct themselves to the point equally well with the tentacles on the borders of the disc.
In these experiments, some of the short tentacles on the disc, which would have been directed to the centre, had the leaf been immersed in an exciting fluid, were now inflected in an exactly opposite direction, viz. towards the circumference. These tentacles, therefore, had deviated as much as 180o from the direction which they would have assumed if their own glands had been stimulated, and which may be considered as the normal one. Between this, the greatest possible and no deviation from the normal direction, every degree could be observed in the tentacles on these several leaves. Notwithstanding the precision with which the tentacles generally were directed, those near the circumference of one leaf were not accurately directed towards some phosphate of lime at a rather distant point on the opposite side of the disc. It appeared as if the motor [page 246] impulse in passing transversely across nearly the whole width of the disc had departed somewhat from a true course. This accords with what we have already seen of the impulse travelling less readily in a transverse than in a longitudinal direction. In some other cases, the exterior tentacles did not seem capable of such accurate movement as the shorter and more central ones.
Nothing could be more striking than the appearance of the above four leaves, each with their tentacles pointing truly to the two little masses of the phosphate on their discs. We might imagine that we were looking at a lowly organised animal seizing prey with its arms. In the case of Drosera the explanation of this accurate power of movement, no doubt, lies in the motor impulse radiating in all directions, and whichever side of a tentacle it first strikes, that side contracts, and the tentacle consequently bends towards the point of excitement. The pedicels of the tentacles are flattened, or elliptic in section. Near the bases of the short central tentacles, the flattened or broad face is formed of about five longitudinal rows of cells; in the outer tentacles of the disc it consists of about six or seven rows; and in the extreme marginal tentacles of above a dozen rows. As the flattened bases are thus formed of only a few rows of cells, the precision of the movements of the tentacles is the more remarkable; for when the motor impulse strikes the base of a tentacle in a very oblique direction relatively to its broad face, scarcely more than one or two cells towards one end can be affected at first, and the contraction of these cells must draw the whole tentacle into the proper direction. It is, perhaps, owing to the exterior pedicels being much flattened that they do not bend quite so accurately to the point of excitement as the [page 247] more central ones. The properly directed movement of the tentacles is not an unique case in the vegetable kingdom, for the tendrils of many plants curve towards the side which is touched; but the case of Drosera is far more interesting, as here the tentacles are not directly excited, but receive an impulse from a distant point; nevertheless, they bend accurately towards this point.
FIG. 11. (Drosera rotundifolia.) Diagram showing the distribution of the vascular tissue in a small leaf.
On the Nature of the Tissues through which the Motor Impulse is Transmitted.—It will be necessary first to describe briefly the course of the main fibro-vascular bundles. These are shown in the accompanying sketch (fig. 11) of a small leaf. Little vessels from the neighbouring bundles enter all the many tentacles with which the surface is studded; but these are not here represented. The central trunk, which runs up the footstalk, bifurcates near the centre of the leaf, each branch bifurcating again and again according to the size of the leaf. This central trunk sends off, low down on each side, a delicate branch, which may be called the sublateral branch. There is also, on each side, a main lateral branch or bundle, which bifurcates in the same manner as the others. Bifurcation does not imply that any single vessel divides, but that a bundle [page 248] divides into two. By looking to either side of the leaf, it will be seen that a branch from the great central bifurcation inosculates with a branch from the lateral bundle, and that there is a smaller inosculation between the two chief branches of the lateral bundle. The course of the vessels is very complex at the larger inosculation; and here vessels, retaining the same diameter, are often formed by the union of the bluntly pointed ends of two vessels, but whether these points open into each other by their attached surfaces, I do not know. By means of the two inosculations all the vessels on the same side of the leaf are brought into some sort of connection. Near the circumference of the larger leaves the bifurcating branches also come into close union, and then separate again, forming a continuous zigzag line of vessels round the whole circumference. But the union of the vessels in this zigzag line seems to be much less intimate than at the main inosculation. It should be added that the course of the vessels differs somewhat in different leaves, and even on opposite sides of the same leaf, but the main inosculation is always present.
Now in my first experiments with bits of meat placed on one side of the disc, it so happened that not a single tentacle was inflected on the opposite side; and when I saw that the vessels on the same side were all connected together by the two inosculations, whilst not a vessel passed over to the opposite side, it seemed probable that the motor impulse was conducted exclusively along them.
In order to test this view, I divided transversely with the point of a lancet the central trunks of four leaves, just beneath the main bifurcation; and two days afterwards placed rather large bits of raw meat [page 249] (a most powerful stimulant) near the centre of the disc above the incision—that is, a little towards the apex—with the following results:—
[(1) This leaf proved rather torpid: after 4 hrs. 40 m. (in all cases reckoning from the time when the meat was given) the tentacles at the distal end were a little inflected, but nowhere else; they remained so for three days, and re-expanded on the fourth day. The leaf was then dissected, and the trunk, as well as the two sublateral branches, were found divided.
(2) After 4 hrs. 30 m. many of the tentacles at the distal end were well inflected. Next day the blade and all the tentacles at this end were strongly inflected, and were separated by a distinct transverse line from the basal half of the leaf, which was not in the least affected. On the third day, however, some of the short tentacles on the disc near the base were very slightly inflected. The incision was found on dissection to extend across the leaf as in the last case.
(3) After 4 hrs. 30 m. strong inflection of the tentacles at the distal end, which during the next two days never extended in the least to the basal end. The incision as before.
(4) This leaf was not observed until 15 hrs. had elapsed, and then all the tentacles, except the extreme marginal ones, were found equally well inflected all round the leaf. On careful examination the spiral vessels of the central trunk were certainly divided; but the incision on one side had not passed through the fibrous tissue surrounding these vessels, though it had passed through the tissue on the other side.*]
The appearance presented by the leaves (2) and (3) was very curious, and might be aptly compared with that of a man with his backbone broken and lower extremities paralysed. Excepting that the line between the two halves was here transverse instead of longitudinal, these leaves were in the same state as some of those in the former experiments, with bits of meat placed on one side of the disc. The case of leaf (4)
* M. Ziegler made similar experiments by cutting the spiral vessels of Drosera intermedia(‘Comptes rendus,’ 1874, p. 1417), but arrived at conclusions widely different from mine. [page 250]
proves that the spiral vessels of the central trunk may be divided, and yet the motor impulse be transmitted from the distal to the basal end; and this led me at first to suppose that the motor force was sent through the closely surrounding fibrous tissue; and that if one half of this tissue was left undivided, it sufficed for complete transmission. But opposed to this conclusion is the fact that no vessels pass directly from one side of the leaf to the other, and yet, as we have seen, if a rather large bit of meat is placed on one side, the motor impulse is sent, though slowly and imperfectly, in a transverse direction across the whole breadth of the leaf. Nor can this latter fact be accounted for by supposing that the transmission is effected through the two inosculations, or through the circumferential zigzag line of union, for had this been the case, the exterior tentacles on the opposite side of the disc would have been affected before the more central ones, which never occurred. We have also seen that the extreme marginal tentacles appear to have no power to transmit an impulse to the adjoining tentacles; yet the little bundle of vessels which enters each marginal tentacle sends off a minute branch to those on both sides, and this I have not observed in any other tentacles; so that the marginal ones are more closely connected together by spiral vessels than are the others, and yet have much less power of communicating a motor impulse to one another.
But besides these several facts and arguments we have conclusive evidence that the motor impulse is not sent, at least exclusively, through the spiral vessels, or through the tissue immediately surrounding them. We know that if a bit of meat is placed on a gland (the immediately adjoining ones having been removed) on any part of the disc, all the short sur- [page 251] rounding tentacles bend almost simultaneously with great precision towards it. Now there are tentacles on the disc, for instance near the extremities of the sublateral bundles (fig. 11), which are supplied with vessels that do not come into contact with the branches that enter the surrounding tentacles, except by a very long and extremely circuitous course. Nevertheless, if a bit of meat is placed on the gland of a tentacle of this kind, all the surrounding ones are inflected towards it with great precision. It is, of course, possible that an impulse might be sent through a long and circuitous course, but it is obviously impossible that the direction of the movement could be thus communicated, so that all the surrounding tentacles should bend precisely to the point of excitement. The impulse no doubt is transmitted in straight radiating lines from the excited gland to the surrounding tentacles; it cannot, therefore, be sent along the fibro-vascular bundles. The effect of cutting the central vessels, in the above cases, in preventing the transmission of the motor impulse from the distal to the basal end of a leaf, may be attributed to a considerable space of the cellular tissue having been divided. We shall hereafter see, when we treat of Dionaea, that this same conclusion, namely that the motor impulse is not transmitted by the fibro-vascular bundles, is plainly confirmed; and Prof. Cohn has come to the same conclusion with respect to Aldrovanda—both members of the Droseraceae.
As the motor impulse is not transmitted along the vessels, there remains for its passage only the cellular tissue; and the structure of this tissue explains to a certain extent how it travels so quickly down the long exterior tentacles, and much more slowly across the blade of the leaf. We shall also see why it crosses [page 252] the blade more quickly in a longitudinal than in a transverse direction; though with time it can pass in any direction. We know that the same stimulus causes movement of the tentacles and aggregation of the protoplasm, and that both influences originate in and proceed from the glands within the same brief space of time. It seems therefore probable that the motor impulse consists of the first commencement of a molecular change in the protoplasm, which, when well developed, is plainly visible, and has been designated aggregation; but to this subject I shall return. We further know that in the transmission of the aggregating process the chief delay is caused by the passage of the transverse cell-walls; for as the aggregation travels down the tentacles, the contents of each successive cell seem almost to flash into a cloudy mass. We may therefore infer that the motor impulse is in like manner delayed chiefly by passing through the cell-walls.
The greater celerity with which the impulse is transmitted down the long exterior tentacles than across the disc may be largely attributed to its being closely confined within the narrow pedicel, instead of radiating forth on all sides as on the disc. But besides this confinement, the exterior cells of the tentacles are fully twice as long as those of the disc; so that only half the number of transverse partitions have to be traversed in a given length of a tentacle, compared with an equal space on the disc; and there would be in the same proportion less retardation of the impulse. Moreover, in sections of the exterior tentacles given by Dr. Warming,* the parenchymatous
* ‘Videnskabelige Meddelelser de la Soc. d’Hist. nat. de Copenhague,’ Nos. 10-12, 1872, woodcuts iv. and v. [page 253]
cells are shown to be still more elongated; and these would form the most direct line of communication from the gland to the bending place of the tentacle. If the impulse travels down the exterior cells, it would have to cross from between twenty to thirty transverse partitions; but rather fewer if down the inner parenchymatous tissue. In either case it is remarkable that the impulse is able to pass through so many partitions down nearly the whole length of the pedicel, and to act on the bending place, in ten seconds. Why the impulse, after having passed so quickly down one of the extreme marginal tentacles (about 1/20 of an inch in length), should never, as far as I have seen, affect the adjoining tentacles, I do not understand. It may be in part accounted for by much energy being expended in the rapidity of the transmission.
Most of the cells of the disc, both the superficial ones and the larger cells which form the five or six underlying layers, are about four times as long as broad. They are arranged almost longitudinally, radiating from the footstalk. The motor impulse, therefore, when transmitted across the disc, has to cross nearly four times as many cell-walls as when transmitted in a longitudinal direction, and would consequently be much delayed in the former case. The cells of the disc converge towards the bases of the tentacles, and are thus fitted to convey the motor impulse to them from all sides. On the whole, the arrangement and shape of the cells, both those of the disc and tentacles, throw much light on the rate and manner of diffusion of the motor impulse. But why the impulse proceeding from the glands of the exterior rows of tentacles tends to travel laterally and towards the centre of the leaf, but not centrifugally, is by no means clear. [page 254]
Mechanism of the Movements, and Nature of the Motor Impulse.—Whatever may be the means of movement, the exterior tentacles, considering their delicacy, are inflected with much force. A bristle, held so that a length of 1 inch projected from a handle, yielded when I tried to lift with it an inflected tentacle, which was somewhat thinner than the bristle. The amount or extent, also, of the movement is great. Fully expanded tentacles in becoming inflected sweep through an angle of 180o; and if they are beforehand reflexed, as often occurs, the angle is considerably greater. It is probably the superficial cells at the bending place which chiefly or exclusively contract; for the interior cells have very delicate walls, and are so few in number that they could hardly cause a tentacle to bend with precision to a definite point. Though I carefully looked, I could never detect any wrinkling of the surface at the bending place, even in the case of a tentacle abnormally curved into a complete circle, under circumstances hereafter to be mentioned.
All the cells are not acted on, though the motor impulse passes through them. When the gland of one of the long exterior tentacles is excited, the upper cells are not in the least affected; about halfway down there is a slight bending, but the chief movement is confined to a short space near the base; and no part of the inner tentacles bends except the basal portion. With respect to the blade of the leaf, the motor impulse may be transmitted through many cells, from the centre to the circumference, without their being in the least affected, or they may be strongly acted on and the blade greatly inflected. In the latter case the movement seems to depend partly on the strength of the stimulus, and partly on [page 255] its nature, as when leaves are immersed in certain fluids.
The power of movement which various plants possess, when irritated, has been attributed by high authorities to the rapid passage of fluid out of certain cells, which, from their previous state of tension, immediately contract.* Whether or not this is the primary cause of such movements, fluid must pass out of closed cells when they contract or are pressed together in one direction, unless they at the same time expand in some other direction. For instance, fluid can be seen to ooze from the surface of any young and vigorous shoot if slowly bent into a semi-circle.** In the case of Drosera there is certainly much movement of the fluid throughout the tentacles whilst they are undergoing inflection. Many leaves can be found in which the purple fluid within the cells is of an equally dark tint on the upper and lower sides of the tentacles, extending also downwards on both sides to equally near their bases. If the tentacles of such a leaf are excited into movement, it will generally be found after some hours that the cells on the concave side are much paler than they were before, or are quite colourless, those on the convex side having become much darker. In two instances, after particles of hair had been placed on glands, and when in the course of 1 hr. 10 m. the tentacles were incurved halfway towards the centre of the leaf, this change of colour in the two sides was conspicuously plain. In another case, after a bit of meat had been placed on a gland, the purple colour was observed at intervals to be slowly travelling from the upper to the lower part, down the convex side of
* Sachs, ‘Traité de Bot.’ 3rd edit. 1874, p. 1038. This view was, I believe, first suggested by Lamarck.
** Sachs, ibid. p. 919. [page 256]
the bending tentacle. But it does not follow from these observations that the cells on the convex side become filled with more fluid during the act of inflection than they contained before; for fluid may all the time be passing into the disc or into the glands which then secrete freely.
The bending of the tentacles, when leaves are immersed in a dense fluid, and their subsequent re-expansion in a less dense fluid, show that the passage of fluid from or into the cells can cause movements like the natural ones. But the inflection thus caused is often irregular; the exterior tentacles being sometimes spirally curved. Other unnatural movements are likewise caused by the application of dense fluids, as in the case of drops of syrup placed on the backs of leaves and tentacles. Such movements may be compared with the contortions which many vegetable tissues undergo when subjected to exosmose. It is therefore doubtful whether they throw any light on the natural movements.
If we admit that the outward passage of fluid is the cause of the bending of the tentacles, we must suppose that the cells, before the act of inflection, are in a high state of tension, and that they are elastic to an extraordinary degree; for otherwise their contraction could not cause the tentacles often to sweep through an angle of above 180o. Prof. Cohn, in his interesting paper* on the movements of the stamens of certain Compositae, states that these organs, when dead, are as elastic as threads of india-rubber, and are then only half as long as they were when alive. He believes that the living protoplasm
* ‘Abhand. der Schles. Gesell. fr vaterl. Cultur,’ 1861, Heft i. An excellent abstract of this paper is given in the ‘Annals and Mag. of Nat. Hist.’ 3rd series, 1863, vol. xi. pp. 188-197. [page 257]
within their cells is ordinarily in a state of expansion, but is paralysed by irritation, or may be said to suffer temporary death; the elasticity of the cell-walls then coming into play, and causing the contraction of the stamens. Now the cells on the upper or concave side of the bending part of the tentacles of Drosera do not appear to be in a state of tension, nor to be highly elastic; for when a leaf is suddenly killed, or dies slowly, it is not the upper but the lower sides of the tentacles which contract from elasticity. We may, therefore, conclude that their movements cannot be accounted for by the inherent elasticity of certain cells, opposed as long as they are alive and not irritated by the expanded state of their contents.
A somewhat different view has been advanced by other physiologists—namely that the protoplasm, when irritated, contracts like the soft sarcode of the muscles of animals. In Drosera the fluid within the cells of the tentacles at the bending place appears under the microscope thin and homogeneous, and after aggregation consists of small, soft masses of matter, undergoing incessant changes of form and floating in almost colourless fluid. These masses are completely redissolved when the tentacles re-expand. Now it seems scarcely possible that such matter should have any direct mechanical power; but if through some molecular change it were to occupy less space than it did before, no doubt the cell-walls would close up and contract. But in this case it might be expected that the walls would exhibit wrinkles, and none could ever be seen. Moreover, the contents of all the cells seem to be of exactly the same nature, both before and after aggregation; and yet only a few of the basal cells contract, the rest of the tentacle remaining straight.
A third view maintained by some physiologists, [page 258] though rejected by most others, is that the whole cell, including the walls, actively contracts. If the walls are composed solely of non-nitrogenous cellulose, this view is highly improbable; but it can hardly be doubted that they must be permeated by proteid matter, at least whilst they are growing. Nor does there seem any inherent improbability in the cell-walls of Drosera contracting, considering their high state of organisation; as shown in the case of the glands by their power of absorption and secretion, and by being exquisitely sensitive so as to be affected by the pressure of the most minute particles. The cell-walls of the pedicels also allow various impulses to pass through them, inducing movement, increased secretion and aggregation. On the whole the belief that the walls of certain cells contract, some of their contained fluid being at the same time forced outwards, perhaps accords best with the observed facts. If this view is rejected, the next most probable one is that the fluid contents of the cells shrink, owing to a change in their molecular state, with the consequent closing in of the walls. Anyhow, the movement can hardly be attributed to the elasticity of the walls, together with a previous state of tension.
With respect to the nature of the motor impulse which is transmitted from the glands down the pedicels and across the disc, it seems not improbable that it is closely allied to that influence which causes the protoplasm within the cells of the glands and tentacles to aggregate. We have seen that both forces originate in and proceed from the glands within a few seconds of the same time, and are excited by the same causes. The aggregation of the protoplasm lasts almost as long as the tentacles remain inflected, even though this be for more than a week; but the [page 259] protoplasm is redissolved at the bending place shortly before the tentacles re-expand, showing that the exciting cause of the aggregating process has then quite ceased. Exposure to carbonic acid causes both the latter process and the motor impulse to travel very slowly down the tentacles. We know that the aggregating process is delayed in passing through the cell- walls, and we have good reason to believe that this holds good with the motor impulse; for we can thus understand the different rates of its transmission in a longitudinal and transverse line across the disc. Under a high power the first sign of aggregation is the appearance of a cloud, and soon afterwards of extremely fine granules, in the homogeneous purple fluid within the cells; and this apparently is due to the union of molecules of protoplasm. Now it does not seem an improbable view that the same tendency—namely for the molecules to approach each other—should be communicated to the inner surfaces of the cell-walls which are in contact with the protoplasm; and if so, their molecules would approach each other, and the cell-wall would contract.
To this view it may with truth be objected that when leaves are immersed in various strong solutions, or are subjected to a heat of above 130° Fahr. (54°.4 Cent.), aggregation ensues, but there is no movement. Again, various acids and some other fluids cause rapid movement, but no aggregation, or only of an abnormal nature, or only after a long interval of time; but as most of these fluids are more or less injurious, they may check or prevent the aggregating process by injuring or killing the protoplasm. There is another and more important difference in the two processes: when the glands on the disc are excited, they transmit some influence up the surrounding [page 260] tentacles, which acts on the cells at the bending place, but does not induce aggregation until it has reached the glands; these then send back some other influence, causing the protoplasm to aggregate, first in the upper and then in the lower cells.
The Re-expansion of the Tentacles.—This movement is always slow and gradual. When the centre of the leaf is excited, or a leaf is immersed in a proper solution, all the tentacles bend directly towards the centre, and afterwards directly back from it. But when the point of excitement is on one side of the disc, the surrounding tentacles bend towards it, and therefore obliquely with respect to their normal direction; when they afterwards re-expand, they bend obliquely back, so as to recover their original positions. The tentacles farthest from an excited point, wherever that may be, are the last and the least affected, and probably in consequence of this they are the first to re-expand. The bent portion of a closely inflected tentacle is in a state of active contraction, as shown by the following experiment. Meat was placed on a leaf, and after the tentacles were closely inflected and had quite ceased to move, narrow strips of the disc, with a few of the outer tentacles attached to it, were cut off and laid on one side under the microscope. After several failures, I succeeded in cutting off the convex surface of the bent portion of a tentacle. Movement immediately recommenced, and the already greatly bent portion went on bending until it formed a perfect circle; the straight distal portion of the tentacle passing on one side of the strip. The convex surface must therefore have previously been in a state of tension, sufficient to counter-balance that of the concave surface, which, when free, curled into a complete ring.
The tentacles of an expanded and unexcited leaf [page 261] are moderately rigid and elastic; if bent by a needle, the upper end yields more easily than the basal and thicker part, which alone is capable of becoming inflected. The rigidity of this basal part seems due to the tension of the outer surface balancing a state of active and persistent contraction of the cells of the inner surface. I believe that this is the case, because, when a leaf is dipped into boiling water, the tentacles suddenly become reflexed, and this apparently indicates that the tension of the outer surface is mechanical, whilst that of the inner surface is vital, and is instantly destroyed by the boiling water. We can thus also understand why the tentacles as they grow old and feeble slowly become much reflexed. If a leaf with its tentacles closely inflected is dipped into boiling water, these rise up a little, but by no means fully re-expand. This may be owing to the heat quickly destroying the tension and elasticity of the cells of the convex surface; but I can hardly believe that their tension, at any one time, would suffice to carry back the tentacles to their original position, often through an angle of above 180o. It is more probable that fluid, which we know travels along the tentacles during the act of inflection, is slowly re-attracted into the cells of the convex surface, their tension being thus gradually and continually increased.
A recapitulation of the chief facts and discussions in this chapter will be given at the close of the next chapter. [page 262]
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.
This book is part of the public domain. Charles Darwin (2004). Insectivorous Plants. Urbana, Illinois: Project Gutenberg. Retrieved October 2022, from https://www.gutenberg.org/cache/epub/5765/pg5765-images.html
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.