This story draft by @escholar has not been reviewed by an editor, YET.

Physics Results

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
0-item

Table of Links

Abstract and 1. Introduction

  1. Unfolding

    2.1 Posing the Unfolding Problem

    2.2 Our Unfolding Approach

  2. Denoising Diffusion Probabilistic Models

    3.1 Conditional DDPM

  3. Unfolding with cDDPMs

  4. Results

    5.1 Toy models

    5.2 Physics Results

  5. Discussion, Acknowledgments, and References


Appendices

A. Conditional DDPM Loss Derivation

B. Physics Simulations

C. Detector Simulation and Jet Matching

D. Toy Model Results

E. Complete Physics Results

5.2 Physics Results

We test our approach on particle physics data by applying it to jet datasets from various processes sampled using the PYTHIA event generator (details of these synthetic datasets can be found in appendix B). The generated truth-level jets were passed through two different detector simulation frameworks to simulate particle interactions within an LHC detector. The detector simulations used were DELPHES with the standard CMS configuration, and another detector simulator developed using an analytical data-driven approximation for the pT , η, and ϕ resolutions from results published by the ATLAS collaboration (more details in appendix C). The DELPHES CMS detector simulation is the standard and allows comparison to other machine-learning based unfolding algorithms, while the data-driven detector simulation tests the unfolding success under more drastic detector smearing.




Authors:

(1) Camila Pazos, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts;

(2) Shuchin Aeron, Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions;

(3) Pierre-Hugues Beauchemin, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions;

(4) Vincent Croft, Leiden Institute for Advanced Computer Science LIACS, Leiden University, The Netherlands;

(5) Martin Klassen, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts;

(6) Taritree Wongjirad, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions.


This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks