paint-brush

This story draft by @einstein has not been reviewed by an editor, YET.

Relativism and Reality

featured image - Relativism and Reality
Albert Einstein HackerNoon profile picture

Einstein's Theories of Relativity and Gravitation by Albert Einstein, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. Relativism and Reality

Relativism and Reality

This is the viewpoint of relativism. The statue is golden for one observer and silver to the other. The sun is rising here and setting in another part of the world. It is raining here and clear in Chicago. The [24]observer in Delft hears the bombardment of Antwerp and the observer in London does not. If they were to be consistent, both the Greek and the medieval-modern absolutist would have to dispute whether the statue were “really” golden or silver, whether the sun were “really” rising or setting, whether the weather were “really” fair or foul, whether the bombardment were “really” accompanied by loud noises or not; and on each of these questions they would have to come to an agreement or confess their methods inadequate. But to the relativist the answer is simple—whether this or that be true depends upon the observer. In simple cases we understand this full well, as we have always realized it. In less simple cases we recognize it less easily or not at all, so that some of our thought is absolutist in its tendencies while the rest is relativistic. Einstein is the first ever to realize this fully—or if not this, then the first ever to realize it so fully as to be moved toward a studied effort to free human thought from the mixture of relativism and absolutism and make it consistently the one or the other.

This brings it about that the observed fact occupies a position of unexpected significance. For when we discuss matters of physical science under a strictly relativistic philosophy, we must put away as metaphysical everything that smacks of a “reality” partly concealed behind our observations. We must focus attention upon the reports of our senses and of the instruments that supplement them. These observations, which join our perceptions to their external objects, afford us our only objective manifestations; them we must accept as final—subject always to such [25]correction as more refined observations may suggest. The question whether a “true” length or area or mass or velocity or duration or temperature exists back of the numerical determination, or in the presence of a determination that is subject to correction, or in the absence of any determination at all, is a metaphysical one and one that the physicist must not ask. Length, area, mass, velocity, duration, temperature—none of these has any meaning other than the number obtained by measurement.]* [If several different determinations are checked over and no error can be found in any of them, the fault must lie not with the observers but with the object, which we must conclude presents different values to different observers.]33

[We are after all accustomed to this viewpoint; we do not demand that Pittsburgh shall present the same distance from New York and from Philadelphia, or that the New Yorker and the Philadelphian come to any agreement as to the “real” distance of Pittsburgh. The distance of Pittsburgh depends upon the position of the observer. Nor do we demand that the man who locates the magnetic pole in one spot in 1900 and in another in 1921 come to a decision as to where it “really” is; we accept his statement that its position depends upon the time of the observation.

What this really means is that the distance to Pittsburgh and the position of the magnetic pole are joint properties of the observer and the observed—relations between them, as we might put it. This is obvious enough in the case of the distance of Pittsburgh; it is hardly so obvious in the case of the [26]position of the magnetic pole, varying with the lapse of time. But if we reflect that the observation of 1900 and that of 1921 were both valid, and both represented the true position of the pole for the observer of the date in question, we must see that this is the only explanation that shows us the way out.

I do not wish to speak too definitely of the Einstein theories in these introductory remarks, and so shall refrain from mentioning explicitly in this place the situation which they bring up and upon which what I have just said has direct bearing. It will be recognized when it arises. What must be pointed out here, however, is that we are putting the thing which the scientist calls the “observed value” on a footing of vastly greater consequence than we should have been willing offhand to concede to it. So far as any single observer is concerned, his own best observed values are themselves the external world; he cannot properly go behind the conditions surrounding his observations and speak of a real external world beyond these observations. Any world which he may think of as so existing is purely a conceptual world, one which for some reason he infers to exist behind the deceptive observations. Provided he makes this reservation he is quite privileged to speculate about this concealed world, to bestow upon it any characteristics that he pleases; but it can have no real existence for him until he becomes able to observe it. The only reality he knows is the one he can directly observe.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Albert Einstein (2020). Einstein's Theories of Relativity and Gravitation. Urbana, Illinois: Project Gutenberg. Retrieved October 2022.

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/cache/epub/63372/pg63372-images.html