This story draft by @einstein has not been reviewed by an editor, YET.
Einstein's Theories of Relativity and Gravitation by Albert Einstein, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. Einstein’s Results
Thus we approach the absolute character of the surface through the relative nature of the observer’s reference system. There is a relationship common to all values of the g’s that belong to the same [262]curvature. This relationship is expressed by a differential equation. It is this equation of curvature that the airship’s observer must find. Einstein’s problem was similar, but he was concerned with four dimensions, which entailed a general formula with ten g’s, and he had to find a set of differential equations of the second order to determine the law of Fabric curvature. He divided the Fabric into regions: I. World-Frame—beyond influence of energy. II. Empty region—free of energy, but under its influence. III. Region containing free energy only. Each region has a characteristic curvature. By means of an absolute differential calculus—a wonderful mathematical scaffolding erected by Riemann, Christoffel and others—involving the theory of tensors, he succeeded in finding such a set of equations. He kept the following points in view: (1) The equations must not only give the character of region II, but must satisfy the special case of region I; (2) They must be independent of any partitioning system, because the General Theory of Relativity demands that a law of nature be in a form appropriate for all observers whatever their position and motion; (3) They must be concerned with energy which is conserved, not mass which the Special Theory showed dependent on velocity. This set of differential equations which shows how the curvature of the Fabric at any point links to the curvature at neighboring points is the law of gravitation, a law which has been severely tested by the practical observation of the solar eclipse already referred to. At a first approximation these equations degenerate into Newton’s Law. At a second [263]approximation they account for the motion of the perihelion of Mercury, which had hitherto baffled astronomers. All the laws of mechanics are deducible from this law of World-Fabric curvature, i.e. conservation of energy (which includes conservation of mass since we re-define mass as energy) and conservation of momentum (re-defined by a relativist). It must be noted that this law and the General Theory show that the velocity of light is not absolutely constant, but, like everything else, a light-pulse is affected by the Fabric curvature in a gravitational field. In conclusion we will contrast some conspicuous differences in the old world view of classical mechanics and the new view presented by Einstein.
1. A three-dimensional ether medium with variously conceived properties which communicated the supposed inherent attractive force in matter in some unexplained way, and transmitted electromagnetic waves, has been replaced by a four-dimensional external World-Fabric, the geometrical character of which controls the motion of matter (energy) and accounts for all mechanical laws.
2. After separating the observer’s subjective share in definitions from nature’s share in the things defined, space, time, and force, hitherto regarded as absolute, have been shown to be purely relative and dependent on the observer’s track. Mass has also proved to be relative to velocity unless re-defined as energy. As classical mechanics bases all definitions on space, time, and mass units, the relativity of such defined quantities is now apparent.
3. Newton’s laws of motion, his law of gravitation, [264]and the laws of conservation, hitherto regarded as unrelated, are now synthesised in a basic law of mechanics.
Einstein has not disturbed the electric theory of matter, and both the old and new physics have in common the “Principle of Least Action.” We obtain a glimpse of this principle in the unique tracks pursued by freely moving bodies, which may be regarded as tracks of least effort, force only being manifested as an expression of the Fabric’s resentment when bodies depart from these natural tracks. Einstein has approached nearer to the truth in regard to the laws underlying nature, and, as always, this means a simplification. His theory, which entails a readjustment of such fundamental conceptions as space and time, opens up fresh fields to scientific investigation and to philosophic thought. It reveals a bridge uniting the domains of physics and philosophy, and it heralds a new era in the history of science.[265]
1Commander McHardy uses the term “event” in a sense somewhat different from that seen in a majority of the essays. He reserves for the four-dimensional element—the instant of time at a point in space—the name “point-event”; and the term “event” he applies to a collection of these forming, together, an observable whole. An actual physical happening, like a railroad wreck or a laboratory experiment, it will be realized is of the latter sort, occupying an appreciable region of space rather than a single point, and an appreciable interval of time rather than a single second. To the element, the “point-event” of Commander McHardy’s essay, this bears the same relation that the geometer’s solid bears to his point. This comment is in no sense to be taken as criticism of Commander McHardy’s terminology, which rather appeals to us; we make it merely to guard against confusion in the reader’s mind.—Editor. ↑
2This paragraph is the result of an editorial revision of the author’s text, designed to retain the substance of his presentation, while tying up what he has to say more definitely with the preceding essays, and eliminating the distinction between finite and infinitesimal intervals, which we believe to be out of place in an essay of this character. We will not apologize to our mathematical readers for having used finite and differential notation in the same equation, in violation of mathematical convention.—Editor. ↑
3Although gravitational force in a small region can be imitated or annulled by accelerating motion, there remains the disturbing influence of gravitational matter already referred to and expressed in the fabric curvature. It is this that defines how unique tracks run, or rather, how bodies progress.—Author. ↑
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.
This book is part of the public domain. Albert Einstein (2020). Einstein's Theories of Relativity and Gravitation. Urbana, Illinois: Project Gutenberg. Retrieved October 2022.
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/cache/epub/63372/pg63372-images.html