paint-brush

This story draft by @hgwells has not been reviewed by an editor, YET.

The Amoeba. Cells, and Tissue

featured image - The Amoeba. Cells, and Tissue
H.G. Wells HackerNoon profile picture

Text Book of Biology, Part 1: Vertebrata by H. G. Wells, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. The Amoeba. Cells, and Tissue

The Amoeba. Cells, and Tissue

Section 50. We have thus seen how the nutritive material is taken into the animal's system and distributed over its body, and incidentally, we have noted how the resultant products of the creature's activity are removed. The essence of the whole process, as we have already stated, is the decomposition and partial oxydation of certain complex chemical compounds to water, carbon dioxide, a low nitrogenous body, which finally takes the form of urea, and other substances. We may now go on to a more detailed study, the microscopic study, or histology, of the tissues in which metaboly and kataboly occur, but before we do this it will be convenient to glance for a moment at another of our animal types-- the Amoeba, the lowest as the rabbit is the highest, in our series.

Section 51. This is shown in Figure III., Sheet 3, as it would appear under the low power of the microscope. We have a mass of a clear, transparent, greyish substance called protoplasm, granular in places, and with a clearer border; within this is a denser portion called the nucleus, or endoplast (n.), which, under the microscope, by transmitted light, appear brighter, and within that a still denser spot, the nucleolus (ns.) or endoplastule. The protoplasm is more or less extensively excavated by fluid spaces, vacuoles; one clearer circular space or vacuole, which is invariably present, appears at intervals, enlarges gradually, and then vanishes abruptly, to reappear after a brief interval; this is called the contractile vacuole (c.v.). The amoeba is constantly changing its shape, whence its older name of the Proteus animalcule, thrusting out masses of its substance in one direction, and withdrawing from another, and hence slowly creeping about. These thrust-out parts, in its outline, are called pseudopodia (ps.). By means of them it gradually creeps round and encloses its food. Little particles of nutritive matter are usually to be detected in the homogeneous protoplasm of its body; commonly these are surrounded by a drop of water taken in with them, and the drop of water is then called a food vacuole. The process of taking in food is called ingestion. The amoeba, in all probability, performs essentially the same chemical process as we have summarised in Sections 101112; it ingests food, digests it in the food vacuoles and builds it up into its body protoplasm, to undergo kataboly and furnish the force of its motion-- the contractile vacuole, is probably respiratory and perhaps excretory, accumulating and then, by its "systole" (compare Section 44), forcing out of its body, the water, carbon dioxide, urea, and other katastases, which are formed concomitantly with its activity. The amoeba reproduces itself in the simplest way; the nucleus occasionally divides into two portions and a widening fissure in the protoplasm of the animal's body separates one from the other. It is impossible to say that one is the parent cell, and the other the offspring; the amoeba we merely perceive, was one and is now two. It is curious to note, therefore, that the amoeba is, in a sense, immortal-- that the living nucleus of one of these minute creatures that we examine to-day under a microscope may have conceivably drawn, out an unbroken thread of life since the remotest epochs of the world's history. Although no sexual intercourse can be observed, there is reason to believe that a process of supposed "cannabalism," in which a larger amoeba may occasionally engulph a smaller one, is really a conjugative reproductive process, and followed by increased vitality and division.

Section 52. Now if the student will compare Section 35, he will see that in the white blood corpuscles we have a very remarkable resemblance to the amoeba; the contractile vacuole is absent, but we have the protoplasmic body, the nucleus and nucleolus, and those creeping fluctuations of shape through the thrusting out and withdrawal of pseudopodia, which constitute "amoeboid" motion. They also multiply, in the same way, by division.

Section 53. It is not only in the white corpuscle of the blood that we find this resemblance; in all the firmer parts of the body we find, on microscopic examination, similar little blebs of protoplasm, and at an early stage of development the young rabbit is simply one mass of these protoplasmic bodies. Their division and multiplication is an essential condition, of growth. Through an unfortunate accident, these protoplasmic blebs, which constitute the living basis of the animal body, have come to be styled "cells," though the term "corpuscles" is far more appropriate.

Section 54. The word is "cell" suggests something enclosed by firm and definite walls, and it was first employed in vegetable histology. Unlike the typical cells of animals, the cells of most plants are not naked protoplasm, but protoplasm enclosed in a wall of substance (cell wall) called cellulose. The presence of this cellulose cell wall, and the consequent necessity of feeding entirely upon liquids and gases that soak through it instead of being able to ingest a portion of solid food is indeed, the primary distinction between the vegetable and the animal kingdoms, as ordinarily considered.

Section 55. Throughout life, millions of these cells retain their primary characters, and constitute the white corpuscles of blood, "phagocytes," and connective tissue corpuscles; others again, engage in the formation of material round themselves, and lie, in such cases, as gristle and bone, embedded in the substance they have formed; others again, undergo great changes in form and internal structure, and become permanently modified into, for instance, nerve fibres and muscle substance. The various substances arising in this way through the activity of cells are called tissues, the building materials of that complex thing, the animal body. Since such a creature as the rabbit is formed through the co-operation of a vast multitude of cells, it is called multicellular; the amoeba, on the other hand, is unicellular. The rabbit may be thus regarded as a vast community of amoeboid creatures and their products.

Section 56. Figure IV., Sheet 3 represents, diagrammatically, embryonic tissue, of which, to begin with, the whole animal consists. The cells are all living, capable of dividing and similar, but as development proceeds, they differentiate, some take on one kind of duty (function), and some another, like boys taking to different trades on leaving school, and wide differences in structure and interdependence become apparent.

Section 57. It is convenient to divide tissues into three classes, though the divisions are by no means clearly marked, nor have they any scientific value. The first of these comprises tissues composed wholly, or with the exception of an almost imperceptible cementing substance, of cells; the second division includes the skeletal tissues, the tissue of mesentery, and the connective and basement tissue of most of the organs, tissues which, generally speaking, consist of a matrix or embedding substance, formed by the cells and outside of them, as well as the cells themselves; and, thirdly, muscular and nervous tissue. We shall study the former two in this chapter, and defer the third division until later.

Section 58. The outer layer of the skin (the epidermis), the inmost lining of the alimentary canal, the lining of the body cavity, and the inner linings of blood-vessels, glands, and various ducts constitute our first division. The general name for such tissues is epithelium. When the cells are more or less flattened, they form squamous epithelium (Figure VI.) such as we find lining the inside of a man's cheek (from which the cells sq.ep. were taken) or covering the mesentery of various types-- sq.end. are from the mesentery (Section 16) of a frog. A short cylindroidal form of cell makes up columnar epithelium, seen typically in the cells covering the villi of the duodenum (Figure V.). This epithelium of the villi has the outer border curiously striated, and this is usually spoken of as leading towards "ciliated" epithelium, to be described immediately. The epithelium of the epidermis is stratified-- that is to say, has many thicknesses of cells; the deeper layers are alive and dividing (stratum mucosum), while the more superficial are increasingly flattened and drier as the surface is approached (stratum corneum) and are continually being rubbed off and replaced from below.

Section 59. In the branching air-tubes of the lung, the central canal of the spinal cord, and in the ureters of the rabbit, and in most other types, in various organs, we find ciliated epithelium (Figure VII.). This is columnar or cubical in form, and with the free edge curiously modified and beset with a number of hair-like processes, the cilia, by which, during the life of the cell, a waving motion is sustained in one direction. This motion assists in maintaining a current in the contents of ducts which are lined with this tissue. The motion is independent of the general life of the animal, so long as the constituent cell still lives, and so it is easy for the student to witness it himself with a microscope having a 1/4-inch or 1/6-inch objective. Very fine cilia may be seen by gently scraping the roof of a frog's mouth (the cells figured are from this source), or the gill of a recently killed mussel, and mounting at once in water, or, better, in a very weak solution of common salt.

Section 60. The lining of glands is secretory epithelium; the cells are usually cubical or polygonal (8, g.ep.), and they display in the most characteristic form what is called metabolism. Anaboly (see Section 14) we have defined, as a chemical change in an upward direction-- less stable and more complex compounds are built up in the processes of vegetable and animal activity towards protoplasm; kataboly is a chemical running down; metaboly is a more general term, covering all vital chemical changes. The products of the action of a glandular epithelium are metabolic products, material derived from the blood is worked, up within the cell, not necessarily with conspicuous gain or loss of energy, and discharged into the gland space. The most striking case of this action is in the "goblet cells" that are found among the villi; these are simply glands of one cell, unicellular glands, and in Figure V. we see three stages in their action: at g.c.1 material (secretion) is seen forming in the cell, at g.c.2 it approaches the outer border, and at g.c.3 it has been discharged, leaving a hollowed cell. Usually however, the escape of secreted matter is not so conspicuous, and the gland-cells are collected as the lining of pits, simple, as in the gastric, pyloric, and Lieberkuhnian glands (Figure VIII., Sections 2329), or branching like a tree or a bunch of grapes (Figure r.g.), as in Brunner's glands (Section 29) the pancreas, and the salivary glands. The salivary glands, we may mention, are a pair internal to the posterior ventral angle of the jaw, the sub-maxillary; a pair anterior to these, the sub-lingual; a pair posterior to the jaw beneath the ear, the parotid, and a pair beneath the eye, the infra orbital.

Section 61. The liver is the most complicated gland in the body (Figure X.). The bile duct (b.d.) branches again and again, and ends at last in the final pits, the lobuli (lb.), which are lined with secretory epithelium, and tightly packed, and squeeze each other into polygonal forms. The blood supply from which the bile would appear to be mainly extracted, is brought by the portal vein, but this blood is altogether unfit for the nutrition of the liver tissue; for this latter purpose a branch of the coeliac artery, the hepatic serves. Hence in the tissue of the liver we have, branching and interweaving among the lobuli, the small branches of the bile duct (b.d.), which carries away the bile formed, the portal vein (p.v.), the hepatic artery (h.a.), and the hepatic vein (h.v.). (Compare Section 45.) Figure X.b shows a lobule; the portal vein and the artery ramify round the lobules-- are inter-lobular, that is (inter, between); the hepatic vein begins in the middle of the lobules (intra-lobular), and receives their blood. (Compare X.a.) Besides its function in the manufacture of the excretory, digestive, and auxiliary bile, the liver performs other duties. It appears to act as an inspector of the assimilation material brought in by the portal vein. The villi, for instance, will absorb arsenic, but this is arrested and thrown down in the liver. A third function is the formation of what would seem to be a store of carbo-hydrate, glycogen, mainly it would appear, from the sugar in the portal vein, though also, very probably, from nitrogenous material, though this may occur only under exceptional conditions. Finally, the nitrogenous katastases, formed in the working of muscle and nerve, and returned by them to the blood for excretion, are not at that stage in the form of urea. Whatever form they assume, they undergo a further metabolism into urea before leaving the body, and the presence of considerable quantities of this latter substance in the liver suggests this as a fourth function of this organ-- the elaboration of urea.

Section 62. Similar from a physiological point of view, to the secretory glands which form the digestive fluids are those which furnish lubricating fluids, the lachrymal gland, and Harderian glands in the orbit internally to the eye, and posterior and anterior to it respectively, the sebaceous glands (oil glands) connected with the hair, and the anal and perineal glands. The secretions of excretory glands are removed from the body; chief among them are the sweat glands and kidneys. The sweat glands are microscopic tubular glands, terminating internally in a small coil (Figure VIII. s.g.) and are scattered thickly over the body, the water of their secretion being constantly removed by evaporation, and the small percentage of salt and urea remaining to accumulate as dirt, and the chief reasonable excuse for washing. The kidney structure is shown diagrammatically in Figure 5, Sheet 7. A great number of branching and straight looped, tubuli (little tubes) converge on an open space, the pelvis. Towards the outer layers (cortex) of the kidney, these tubuli terminate in little dilatations into which tangled knots of blood-vessels project: the dilatations are called Bowman's capsules (B.c.), and each coil of bloodvessel a glomerulus (gl.). In the capsules, water is drained from the blood; in the tubuli, urea and other salts in the urine are secreted from a branching network of vessels.

Section 63. In all the epithelial tissues that we have considered we have one feature in common: they are cells, each equivalent to the amoeba, that have taken on special duties-- in a word, they are specialists. The amoeba is Jack of all trades and a free lance; the protective epidermal cell, the current-making ciliated cell, the bile or urea-making secretory cell, is master of one trade, and a soldier in a vast and wonderfully organized host. We will now consider our second kind of cell in this organization, the cell of which the especial aim is the building round it of a tissue.

Section 64. The simplest variety in this group is hyaline (i.e. glassy) cartilage (gristle). In this the formative cells (the cartilage corpuscles) are enjellied in a clear structureless matrix (Figure XII.), consisting entirely of organic compounds accumulated by their activity. Immediately round the cell lies a capsule of newer material. Some of the cells have recently divided (1); others have done so less recently, and there has been time for the interpolation of matrix, as at 2. In this way the tissue grows and is repaired. A thin layer of connective tissue (see below), the perichondrium, clothes the cartilaginous structure.

Section 65. Connective tissue (Figure XIII) is a general name for a group of tissues of very variable character. It is usually described as consisting typically in the mammals of three chief elements felted together; of comparatively unmodified corpuscles (c.c.), more or less amoeboid, and of fibres which are elongated, altered, and distorted cells. The fibres are of two kinds: yellow, branching, and highly elastic (y.e.f.), in consequence of which they fall into sinuous lines in a preparation, and white and inelastic ones (w.i.f.), lying in parallel bundles. Where the latter element is entirely dominant, the connective tissue is tendon, found especially at the point of attachment of muscles to the parts they work. Some elastic ligaments are almost purely yellow fibrous tissue. A loose interweaving of the three elements is areolar tissue, the chief fabric of mesentery, membrane, and the dermis (beneath the epidermis). With muscle it is the material of the walls of the alimentary canal and bloodvessels, and generally it enters into, binds together, and holds in place other tissue. The connective tissue of fishes displays the differentiation of fibres in a far less distinct manner.

Section 66. Through connective tissues wander the phagocytes, cells that are difficult to distinguish, if really distinct, from the white blood corpuscles. These cells possess a remarkable freedom; they show an initiative of their own, and seem endowed with a subordinate individuality. They occur in great numbers in a tissue called, botryoidal tissue (Figure XIV.), which occurs especially in masses and patches along the course of the alimentary canal, in its walls. The tonsils, swellings on either side of the throat, are such masses, and aggregates occur as visible patches, the Peyer's patches, on the ileum. It also constitutes the mass of the vermiform appendix and the wall of the sacculus rotundus; and in the young animal the "thymus gland," ventral to the heart, and less entirely, the "thyroid gland," ventral to the larynx, are similar structures, which are reduced or disappear as development proceeds. It is evident that in these two latter cases the term "gland" is somewhat of a misnomer. The matrix of botryoidal tissue is a network of stretched and hollowed connective tissue cells-- it is not a secretion, as cartilage matrix appears to be. During digestion, the phagocytes prowl into the intestine, and ingest and devour bacteria, that might otherwise give rise to disease. In inflammation, we may note here, they converge from all directions upon the point wounded or irritated. They appear to be the active agents in all processes of absorption (see osteoclasts under bone), and for instance, migrate into and devour the tissue of the tadpole's tail, during its metamorphosis to the adult frog.

Section 67. Within the connective tissue cells fat drops may be formed, as in Figure XV. Adipose tissue is simply connective tissue loaded with fat-distended cells. The tissue is, of course, a store form of hydro-carbon (Section 17) provided against the possible misadventure of starvation. With the exception of some hybernating animals, such store forms would seem to be of accidental importance only among animals, whereas among plants they are of invariable and necessary occurrence.

Section 68. We now come to Bone, a tissue confined to the vertebrata, and typically shown only in the higher types. As we descend in the scale from birds and mammals to lizards, amphibia (frogs and toads) and fish, we find cartilage continually more important, and the bony constituent of the skeleton correspondingly less so. In such a type as the dog-fish, the skeleton is entirely cartilaginous, bone only occurs in connection with the animal's scales; it must have been in connection with scales that bone first appeared in the vertebrate sub-kingdom. In the frog we have a cartilaginous skeleton overlaid by numerous bony scutes (shield-like plates) which, when the student comes to study that type, he will perceive are equivalent to the bony parts of such scales as occur in the dog-fish, sunk inward, and plating over the cartilage; and in the frog the cartilage also is itself, in a few places, replaced by bony tissue. In the adult rabbit these two kinds of bone, the bone overlying what was originally cartilage (membrane bone), and the bone replacing the cartilage (cartilage bone) have, between them, practically superseded the cartilage altogether. The structure of the most characteristic kind of bone will be understood by reference to Figure XVI. It is a simplified diagram of the transverse section of such a bone as the thigh bone. M.C. is the central marrow cavity, H.v., H.v. are cross sections of small bloodvessels, the Haversian vessels running more or less longitudinally through, the bone in canals, the Haversian canals. Arranged round these vessels are circles of the formative elements, the bone corpuscles or osteoblasts (b.c.) each embedded in bony matrix in a little bed, the lacuna, and communicating one with another by fine processes through canaliculi in the matrix, which processes are only to be seen clearly in decalcified bone (See Section 70). The osteoblasts are arranged in concentric series, and the matrix is therefore in concentric layers, or lamellae (c.l.). Without and within the zone of Haversian systems are (o.l. and i.l.), the outer and inner lamellae. The bone is surrounded by connective tissue, the periosteum. In addition to this compact bone, there is a lighter and looser variety in which spicules and bars of bony tissue are loosely interwoven. Many flat bones, the bones of the skull, for instance, consist of this spongy bone, plated (as an electro spoon is plated) with compact bone.

Section 69. Among the bony bars and spicules of spongy bone occurs the red marrow-- which must not be confused with the yellow marrow, the fatty substance in the central cavity of long bones. In this red marrow are numerous large colourless cells, which appear to form within their substance and then liberate red blood corpuscles. This occurs especially in the spongy bone within the ribs.

Section 70. The matrix of bone differs from that of cartilage or of most other tissues in consisting chiefly of inorganic salts. The chief of these is calcium phosphate, with which much smaller quantities of calcium carbonate, and magnesium phosphate and carbonate occur. These inorganic salts can be removed by immersion of the bone in weak hydrochloric acid, and a flexible network of connecting tissue, Haversian vessels, bone corpuscles, and their processes remains. This is decalcified bone alluded to above.

Section 71. In the very young rabbit, the limb bones, vertebral column, and many of the skull bones are simply plates and bars of cartilage; the future membrane bones, however are planned out in connective tissue. The development of the latter is simple, the connective tissue corpuscles functioning by a simple change of product as osteoblast. The development of the cartilage bones, however, is more complicated. Figure XVII., represents, in a diagrammatic way, the stages in the conversion of a cartilaginous bar to bone. To begin with, the previously sporadically-arranged (scattered anyhow) corpuscles (u.c.c.) are gathered into groups in single file, or in other words, into "columnar" groups (as at c.c.). The matrix becomes clouded with inorganic salts of lime, and it is then said to be calcified. This calcified cartilage then undergoes absorption-- it must not be imagined for a moment that bone is calcified cartilage. Simultaneous with the formation of the cavities (s.) due to this absorption, connective tissue (p.c.i.) from the surrounding perichondrium (p.c.) grows into the ossifying* bar. It is from this connective tissue that the osteoblasts (o.b.) arise, and bone is built up. Throughout life a bone is continually being absorbed and reformed by the activity of the osteoblasts. An osteoblast engaged in the absorption instead of the formation of bone is called an osteoclast.

* The formation of bone is called ossification. To ossify is to become bony.

Section 72. The great thing to notice about this is that cartilage does not become bone, but is eaten into and ousted by it; the osteoblasts and osteoclasts replace entirely the cartilage corpuscles, and are not derived from them.

Section 73. We may mention here the structure of the spleen (Figure 1, Sheet 1). It consists of a connective tissue and muscular coating, with an internal soft matrix much resembling botryoidal tissue, traversed by fibrous trabeculae (= beams, planks) containing blood-vessels, and the whole organ is gorged with blood, particularly after meals. The consideration of its function the student may conveniently defer for the present.

Section 74. Here also, we may notice the lymphatics, a series of small vessels which return the overflow of the blood serum from the capillaries, in the nutrition of the tissues in all parts of the body, to the thoracic duct (see Section 36), and the general circulation. At intervals their course is interrupted by gland-like dilatations, the lymphatic glands, in which masses of rapidly dividing and growing (proliferating) cells occur, of which, doubtless, many are detached and become, first "lymph corpuscles," and, when they reach the veins, white blood corpuscles.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. H. G. Wells (2007). Text Book of Biology, Part 1: Vertebrata. Urbana, Illinois: Project Gutenberg. Retrieved October 2022, from https://www.gutenberg.org/files/21781/21781-h/21781-h.htm

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.

L O A D I N G
. . . comments & more!

About Author

H.G. Wells HackerNoon profile picture
H.G. Wells@hgwells
English novelist, journalist, sociologist, and historian best known for such science fiction novels as The Time Machine.

Topics

Around The Web...