This story draft by @escholar has not been reviewed by an editor, YET.

Mamba: Linear-Time Sequence Modeling with Selective State Spaces: A Simplifed SSM Architecture

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture

Authors:

(1) Albert Gu, Machine Learning Department, Carnegie Mellon University with Equal contribution ([email protected]);

(2) Tri Dao, Department of Computer Science, Princeton University with Equal contribution ([email protected]).

Table of Links

Abstract and 1. Introduction

2 State Space Models

3 Selective State Space Models and 3.1 Motivation: Selection as a Means of Compression

3.2 Improving SSMs with Selection

3.3 Efficient Implementation of Selective SSMs

3.4 A Simplifed SSM Architecture

3.5 Properties of Selection Mechanisms

3.6 Additional Model Details

4 Empirical Evaluation and 4.1 Synthetic Tasks

4.2 Language Modeling

4.3 DNA Modeling

4.4 Audio Modeling and Generation

4.5 Speed and Memory Benchmarks

4.6 Model Ablations

5 Discussion

6 Conclusion, Acknowledgments and References

A Discussion: Selection Mechanism

B Related Work and B.1 S4 Variants and Derivatives

B.2 SSM Architectures

B.3 Relationship to RNNs

B.4 Linear Attention and B.5 Long Context Models

C Mechanics of Selective SSMs

D Hardware-aware Algorithm For Selective SSMs

E Experimental Details and Additional Results and E.1 Synthetic Tasks

E.2 Language Modeling

E.3 DNA Modeling

E.4 Audio Details

E.5 Efficiency Benchmark

3.4 A Simplifed SSM Architecture

As with structured SSMs, selective SSMs are standalone sequence transformations that can be flexibly incorporated into neural networks. The H3 architecture is the basis for the most well-known SSM architectures (Section 2), which are generally comprised of a block inspired by linear attention interleaved with an MLP (multi-layer perceptron) block. We simplify this architecture by combining these two components into one, which is stacked homogenously (Figure 3). This is inspired by the gated attention unit (GAU) (Hua et al. 2022), which did something similar for attention.


This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks