paint-brush
Enhance Sentiment Analysis with Role-Flipping Multi-LLM Negotiationby@textmodels
905 reads
905 reads

Enhance Sentiment Analysis with Role-Flipping Multi-LLM Negotiation

tldt arrow

Too Long; Didn't Read

Our role-flipping multi-LLM negotiation method improves sentiment analysis accuracy and interpretability, outperforming traditional methods across various benchmarks.
featured image - Enhance Sentiment Analysis with Role-Flipping Multi-LLM Negotiation
Writings, Papers and Blogs on Text Models HackerNoon profile picture

Authors:

(1) Xiaofei Sun, Zhejiang University;

(2) Xiaoya Li, Shannon.AI and Bytedance;

(3) Shengyu Zhang, Zhejiang University;

(4) Shuhe Wang, Peking University;

(5) Fei Wu, Zhejiang University;

(6) Jiwei Li, Zhejiang University;

(7) Tianwei Zhang, Nanyang Technological University;

(8) Guoyin Wang, Shannon.AI and Bytedance.

Abstract and Intro

Related Work

LLM Negotiation for Sentiment Analysis

Experiments

Ablation Studies

Conclusion and References

6 Conclusion

In this paper, we investigate the limitations of singular LLM-based sentiment analysis methods and introduce a novel role-flipping multi-LLM negotiation method to enhance both the accuracy and interpretability of sentiment categorizations. Empirical findings on multiple benchmarks show the superiority of our approach compared to traditional ICL and many supervised methods. Future work could explore optimizing the framework for speed and resource consumption, adapting the underlying principles to other NLP tasks, and designing explicit negotiation modules that identify and mitigate the impact of biases and decoding errors present in individual LLMs.

References

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. 2023. Palm 2 technical report. arXiv preprint arXiv:2305.10403.


Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. 2010. Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In International Conference on Language Resources and Evaluation.


Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen technical report. arXiv preprint arXiv:2309.16609.


Rushlene Kaur Bakshi, Navneet Kaur, Ravneet Kaur, and Gurpreet Kaur. 2016. Opinion mining and sentiment analysis. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pages 452–455.


Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901.


Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit Bansal. 2023a. Reconcile: Round-table conference improves reasoning via consensus among diverse llms. arXiv preprint arXiv:2309.13007.


Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023b. Teaching large language models to self-debug. ArXiv, abs/2304.05128.


Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. 2023. Adapting language models to compress contexts. arXiv preprint 2305.14788.


Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311.


Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020. Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.


Junqi Dai, Hang Yan, Tianxiang Sun, Pengfei Liu, and Xipeng Qiu. 2021. Does syntax matter? a strong baseline for aspect-based sentiment analysis with roberta. In North American Chapter of the Association for Computational Linguistics.


Z Dai, Z Yang, Y Yang, J Carbonell, Q Le, and R Transformer-XL Salakhutdinov. 2019. Attentive language models beyond a fixed-length context. 2019. arXiv preprint arXiv:1901.02860.


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.


Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. 2023. Improving factuality and reasoning in language models through multiagent debate. arXiv preprint arXiv:2305.14325.


Hao Fei, Bobo Li, Qian Liu, Lidong Bing, Fei Li, and Tat-Seng Chua. 2023. Reasoning implicit sentiment with chain-of-thought prompting. arXiv preprint arXiv:2305.11255.


Shangbin Feng, Vidhisha Balachandran, Yuyang Bai, and Yulia Tsvetkov. 2023. Factkb: Generalizable factuality evaluation using language models enhanced with factual knowledge. ArXiv, abs/2305.08281.


Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained model for programming and natural languages. arXiv preprint arXiv:2002.08155.


Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng Shou. 2023. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and learn. arXiv preprint arXiv:2306.08640.


Yingqiang Ge, Wenyue Hua, Jianchao Ji, Juntao Tan, Shuyuan Xu, and Yongfeng Zhang. 2023. Openagi: When llm meets domain experts. arXiv preprint arXiv:2304.04370.


Zelalem Gero, Chandan Singh, Hao Cheng, Tristan Naumann, Michel Galley, Jianfeng Gao, and Hoifung Poon. 2023. Self-verification improves few-shot clinical information extraction. arXiv preprint arXiv:2306.00024.


Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification using distant supervision. CS224N project report, Stanford, 1(12):2009.


Ziyu Guan, Long Chen, Wei Zhao, Yi Zheng, Shulong Tan, and Deng Cai. 2016. Weakly-supervised deep learning for customer review sentiment classification. In International Joint Conference on Artificial Intelligence.


Chinnappa Guggilla, Tristan Miller, and Iryna Gurevych. 2016. Cnn- and lstm-based claim classification in online user comments. In International Conference on Computational Linguistics.


Rui Hao, Linmei Hu, Weijian Qi, Qingliu Wu, Yirui Zhang, and Liqiang Nie. 2023. Chatllm network: More brains, more intelligence. arXiv preprint arXiv:2304.12998.


Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al. 2023. Metagpt: Meta programming for multiagent collaborative framework. arXiv preprint arXiv:2308.00352.


Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. 2020. Spanbert: Improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 8:64–77.


Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188.


Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. 2019. Ctrl: A conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858.


Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in neural information processing systems, 35:22199– 22213.


Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.


Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461.


Rui Li, Guoyin Wang, and Jiwei Li. 2023. Are humangenerated demonstrations necessary for in-context learning? arXiv preprint arXiv:2309.14681.


Shuang Li, Yilun Du, Joshua B Tenenbaum, Antonio Torralba, and Igor Mordatch. 2022. Composing ensembles of pre-trained models via iterative consensus. arXiv preprint arXiv:2210.11522.


Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190.


Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and Shuming Shi. 2023. Encouraging divergent thinking in large language models through multi-agent debate. ArXiv, abs/2305.19118.


Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let’s verify step by step. arXiv preprint arXiv:2305.20050.


Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han, Kun Kuang, Jiwei Li, and Fei Wu. 2021. Bertgcn: Transductive text classification by combining gcn and bert. arXiv preprint arXiv:2105.05727.


Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. 2021a. What makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804.


Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi, and Hannaneh Hajishirzi. 2021b. Generated knowledge prompting for commonsense reasoning. arXiv preprint arXiv:2110.08387.


Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.


Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. 2021. Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786.


Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts. 2011a. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies, pages 142–150.


Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, A. Ng, and Christopher Potts. 2011b. Learning word vectors for sentiment analysis. In Annual Meeting of the Association for Computational Linguistics.


Walaa Medhat, Ahmed Hussein Hassan, and Hoda Korashy. 2014. Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5:1093–1113.


Abhijit Mishra, Kuntal Dey, and Pushpak Bhattacharyya. 2017. Learning cognitive features from gaze data for sentiment and sarcasm classification using convolutional neural network. In Annual Meeting of the Association for Computational Linguistics.


Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023. Learning to compress prompts with gist tokens. arXiv preprint arXiv:2304.08467.


Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen. 2020. Bertweet: A pre-trained language model for english tweets. arXiv preprint arXiv:2005.10200.


OpenAI. 2023. Gpt-4 technical report. ArXiv, abs/2303.08774.


Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155.


Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2:1–135.


Lotem Peled and Roi Reichart. 2017. Sarcasm sign: Interpreting sarcasm with sentiment based monolingual machine translation. arXiv preprint arXiv:1704.06836.


Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. 2023. Instruction tuning with gpt-4. arXiv preprint arXiv:2304.03277.


Minh Hieu Phan and Philip Ogunbona. 2020. Modelling context and syntactical features for aspect-based sentiment analysis. In Annual Meeting of the Association for Computational Linguistics.


Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong Sun. 2023. Communicative agents for software development. arXiv preprint arXiv:2307.07924.


Qiao Qian, Minlie Huang, Jinhao Lei, and Xiaoyan Zhu. 2016. Linguistically regularized lstms for sentiment classification. arXiv preprint arXiv:1611.03949.


Chengwei Qin, Aston Zhang, Anirudh Dagar, and Wenming Ye. 2023a. In-context learning with iterative demonstration selection.


Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi Yang. 2023b. Is chatgpt a general-purpose natural language processing task solver? arXiv preprint arXiv:2302.06476.


Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are unsupervised multitask learners. OpenAI blog.


Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-totext transformer. The Journal of Machine Learning Research, 21(1):5485–5551.


Sara Rosenthal, Noura Farra, and Preslav Nakov. 2019. Semeval-2017 task 4: Sentiment analysis in twitter. arXiv preprint arXiv:1912.00741.


Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman ´ Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. 2022. Bloom: A 176bparameter open-access multilingual language model. arXiv preprint arXiv:2211.05100.


Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer: Language models can teach themselves to use tools. arXiv preprint arXiv:2302.04761.


Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. 2023. Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint arXiv:2303.17580.


Noah Shinn, Beck Labash, and Ashwin Gopinath. 2023. Reflexion: an autonomous agent with dynamic memory and self-reflection. ArXiv, abs/2303.11366.


Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing, pages 1631– 1642.


Xiaofei Sun, Linfeng Dong, Xiaoya Li, Zhen Wan, Shuhe Wang, Tianwei Zhang, Jiwei Li, Fei Cheng, Lingjuan Lyu, Fei Wu, et al. 2023a. Pushing the limits of chatgpt on nlp tasks. arXiv preprint arXiv:2306.09719.


Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei Guo, Tianwei Zhang, and Guoyin Wang. 2023b. Text classification via large language models. arXiv preprint arXiv:2305.08377.


Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0: A continual pre-training framework for language understanding. In Proceedings of the AAAI conference on artificial intelligence, volume 34.


Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu, and Jiwei Li. 2021. Chinesebert: Chinese pretraining enhanced by glyph and pinyin information. arXiv preprint arXiv:2106.16038.


Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-agent collaboration: Harnessing the power of intelligent llm agents. arXiv preprint arXiv:2306.03314.


Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023a. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.


Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023b. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288.


Duy-Tin Vo and Yue Zhang. 2015. Target-dependent twitter sentiment classification with rich automatic features. In Twenty-fourth international joint conference on artificial intelligence.


Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu, Haiyue Song, Jiwei Li, and Sadao Kurohashi. 2023. Gpt-re: In-context learning for relation extraction using large language models. arXiv preprint arXiv:2305.02105.


Baoxin Wang. 2018. Disconnected recurrent neural networks for text categorization. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2311–2320.


Danqing Wang and Lei Li. 2023. Learn from mistakes through cooperative interaction with study assistant. ArXiv, abs/2305.13829.


Haifeng Wang, Jiwei Li, Hua Wu, Eduard Hovy, and Yu Sun. 2022a. Pre-trained language models and their applications. Engineering.


Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang. 2023. Gpt-ner: Named entity recognition via large language models. arXiv preprint arXiv:2304.10428.


Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao, and Hao Ma. 2021. Entailment as few-shot learner. arXiv preprint arXiv:2104.14690.


Xingyou Wang, Weijie Jiang, and Zhiyong Luo. 2016b. Combination of convolutional and recurrent neural network for sentiment analysis of short texts. In Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers, pages 2428–2437.


Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2022b. Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171.


Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. 2022a. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682.


Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022b. Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903.


Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. 2020. Unsupervised data augmentation for consistency training. Advances in neural information processing systems, 33:6256–6268.


Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2020. mt5: A massively multilingual pre-trained text-to-text transformer. arXiv preprint arXiv:2010.11934.


Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural information processing systems, 32.


Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601.


Jianfei Yu and Jing Jiang. 2016. Learning sentence embeddings with auxiliary tasks for cross-domain sentiment classification. In Conference on Empirical Methods in Natural Language Processing.


Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, et al. 2022a. Socratic models: Composing zero-shot multimodal reasoning with language. arXiv preprint arXiv:2204.00598.


Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, et al. 2022b. Glm-130b: An open bilingual pre-trained model. arXiv preprint arXiv:2210.02414.


Lei Zhang and B. Liu. 2012. Sentiment analysis and opinion mining. In Encyclopedia of Machine Learning and Data Mining.


Lei Zhang, Shuai Wang, and B. Liu. 2018. Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8.


Mozhi Zhang, Hang Yan, Yaqian Zhou, and Xipeng Qiu. 2023a. Promptner: A prompting method for fewshot named entity recognition via k nearest neighbor search. arXiv preprint arXiv:2305.12217.


Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tianwei Zhang, Fei Wu, et al. 2023b. Instruction tuning for large language models: A survey. arXiv preprint arXiv:2308.10792.


Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. 2023c. Automlgpt: Automatic machine learning with gpt. arXiv preprint arXiv:2305.02499.


Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022a. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068.


Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan, and Lidong Bing. 2023d. Sentiment analysis in the era of large language models: A reality check. arXiv preprint arXiv:2305.15005.


Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. Advances in neural information processing systems, 28.


Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2022b. Automatic chain of thought prompting in large language models. arXiv preprint arXiv:2210.03493.


This paper is available on arxiv under CC 4.0 license.