This story draft by @escholar has not been reviewed by an editor, YET.

End-to-end Composite Training

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
0-item

Authors:

(1) Sanchit Sinha, University of Virginia ([email protected]);

(2) Guangzhi Xiong, University of Virginia ([email protected]);

(3) Aidong Zhang, University of Virginia ([email protected]).

Table of Links

Abstract and 1 Introduction

2 Related Work

3 Methodology and 3.1 Representative Concept Extraction

3.2 Self-supervised Contrastive Concept Learning

3.3 Prototype-based Concept Grounding

3.4 End-to-end Composite Training

4 Experiments and 4.1 Datasets and Networks

4.2 Hyperparameter Settings

4.3 Evaluation Metrics and 4.4 Generalization Results

4.5 Concept Fidelity and 4.6 Qualitative Visualization

5 Conclusion and References

Appendix

3.4 End-to-end Composite Training

Overall, the training objective can be formalized as a weighted sum of CCL and PCG objectives:



where λ1 and λ2 are tunable hyperparameters controlling the strength of contrastive learning and prototype grounding regularization. The end-to-end training objective can be represented as:



The tunable hyperparameter β controls the effect of generalization and robustness on the RCE framework. Note that a higher value of β makes the concept learning procedure brittle and unable to adapt to target domains. However, a very low value of β makes the concept learning procedure overfit on the source domain, implying a tradeoff between concept generalization and performance.


This paper is available on arxiv under CC BY 4.0 DEED license.


Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks