Listen to this story
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community
Part of HackerNoon's growing list of open-source research papers, promoting free access to academic material.
(1) Feng Liang, The University of Texas at Austin and Work partially done during an internship at Meta GenAI (Email: jeffliang@utexas.edu);
(2) Bichen Wu, Meta GenAI and Corresponding author;
(3) Jialiang Wang, Meta GenAI;
(4) Licheng Yu, Meta GenAI;
(5) Kunpeng Li, Meta GenAI;
(6) Yinan Zhao, Meta GenAI;
(7) Ishan Misra, Meta GenAI;
(8) Jia-Bin Huang, Meta GenAI;
(9) Peizhao Zhang, Meta GenAI (Email: stzpz@meta.com);
(10) Peter Vajda, Meta GenAI (Email: vajdap@meta.com);
(11) Diana Marculescu, The University of Texas at Austin (Email: dianam@utexas.edu).
Upon expanding the image model, a straightforward method might be to train the video model using paired depth-video data. Yet, our empirical analysis indicates that this leads to sub-optimal results, as detailed in the ablation study in Section 5.4. We hypothesize that this method neglects the temporal clue within the video, making the frame consistency hard to maintain. While some studies, such as Rerender [49] and CoDeF [32], incorporate optical flow in video synthesis, they typically apply it as a rigid constraint. In contrast, our approach uses flow as a soft condition, allowing us to manage the imperfections commonly found in flow estimation.
This paper is available on arxiv under CC 4.0 license.