paint-brush
NExT-GPT: Any-to-Any Multimodal LLM: Instruction Tuningby@autoencoder
102 reads

NExT-GPT: Any-to-Any Multimodal LLM: Instruction Tuning

tldt arrow

Too Long; Didn't Read

In this study, researchers present an end-to-end general-purpose any-to-any MM-LLM system called NExT-GPT.
featured image - NExT-GPT: Any-to-Any Multimodal LLM: Instruction Tuning
Auto Encoder: How to Ignore the Signal Noise HackerNoon profile picture

Authors:

(1) Shengqiong Wu, NExT++, School of Computing, National University of Singapore;

(2) Hao Fei ,from NExT++, School of Computing at the National University of Singapore, serves as the corresponding author: [email protected].

(3) Leigang Qu, Hao Fei, NExT++, School of Computing, National University of Singapore is the corresponding author: [email protected];;

(4) Wei Ji, Hao Fei, NExT++, School of Computing, National University of Singapore is the corresponding author: [email protected];;

(5) Tat-Seng Chua, Hao Fei, NExT++, School of Computing, National University of Singapore is the corresponding author: [email protected];.

5 Modality-switching Instruction Tuning

5.1 Instruction Tuning

Despite aligning both the encoding and decoding ends with LLM, there remains a gap towards the goal of enabling the overall system to faithfully follow and understand users’ instructions and generate desired multimodal outputs. To address this, further instruction tuning (IT) [97, 77, 52] is deemed necessary to enhance the capabilities and controllability of LLM. IT involves additional training of overall MM-LLMs using ‘(INPUT, OUTPUT)’ pairs, where ‘INPUT’ represents the user’s instruction, and ‘OUTPUT’ signifies the desired model output that conforms to the given instruction. Technically, we leverage LoRA [32] to enable a small subset of parameters within NExT-GPT to be updated concurrently with two layers of projection during the IT phase. As illustrated in Figure 4, when an IT dialogue sample is fed into the system, the LLM reconstructs and generates the textual content of input (and represents the multimodal content with the multimodal signal tokens). The optimization is imposed based on gold annotations and LLM’s outputs. In addition to the LLM tuning, we also fine-tune the decoding end of NExT-GPT. We align the modal signal token representation encoded by the output projection with the gold multimodal caption representation encoded by the diffusion condition encoder. Thereby, the comprehensive tuning process brings closer to the goal of faithful and effective interaction with users.

Figure 4: Illustration of modality-switching instruction tuning.


This paper is available on arxiv under CC BY-NC-ND 4.0 DEED license.