This story draft by @escholar has not been reviewed by an editor, YET.

Mamba: Linear-Time Sequence Modeling with Selective State Spaces: Additional Model Details

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture

Authors:

(1) Albert Gu, Machine Learning Department, Carnegie Mellon University with Equal contribution ([email protected]);

(2) Tri Dao, Department of Computer Science, Princeton University with Equal contribution ([email protected]).

Table of Links

Abstract and 1. Introduction

2 State Space Models

3 Selective State Space Models and 3.1 Motivation: Selection as a Means of Compression

3.2 Improving SSMs with Selection

3.3 Efficient Implementation of Selective SSMs

3.4 A Simplifed SSM Architecture

3.5 Properties of Selection Mechanisms

3.6 Additional Model Details

4 Empirical Evaluation and 4.1 Synthetic Tasks

4.2 Language Modeling

4.3 DNA Modeling

4.4 Audio Modeling and Generation

4.5 Speed and Memory Benchmarks

4.6 Model Ablations

5 Discussion

6 Conclusion, Acknowledgments and References

A Discussion: Selection Mechanism

B Related Work and B.1 S4 Variants and Derivatives

B.2 SSM Architectures

B.3 Relationship to RNNs

B.4 Linear Attention and B.5 Long Context Models

C Mechanics of Selective SSMs

D Hardware-aware Algorithm For Selective SSMs

E Experimental Details and Additional Results and E.1 Synthetic Tasks

E.2 Language Modeling

E.3 DNA Modeling

E.4 Audio Details

E.5 Efficiency Benchmark

3.6 Additional Model Details

Real vs. Complex. Most prior SSMs use complex numbers in their state ℎ, which is necessary for strong performance on many tasks (Gu, Goel, and Ré 2022). However, it has been empirically observed that completely real-valued SSMs seem to work fine, and possibly even better, in some settings (Ma et al. 2023). We use real values as the default, which work well for all but one of our tasks; we hypothesize that the complex-real tradeoff is related to the continuous-discrete spectrum in data modalities, where complex numbers are helpful for continuous modalities (e.g. audio, video) but not discrete (e.g. text, DNA).

Remark 3.1. For brevity in our experimental results, we sometimes abbreviate selective SSMs as S6 models, because they are S4 models with a selection mechanism and computed with a scan.


This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks