paint-brush

This story draft by @einstein has not been reviewed by an editor, YET.

Euclidean and Non-Euclidean Continua

featured image - Euclidean and Non-Euclidean Continua
Albert Einstein HackerNoon profile picture

Einstein's Theories of Relativity and Gravitation by Albert Einstein, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. Euclidean and Non-Euclidean Continua

Euclidean and Non-Euclidean Continua

If we are dealing with a continuum of any sort whatever having one or two or three dimensions, we are able to represent it graphically by means of the line, the plane, or the three-space. The same set of numbers that defines an element of the given continuum likewise defines an element of the Euclidean continuum of the same dimensionality; so the one continuum corresponds to the other, element for element, and either may stand for the other. But if we have a continuum of four or more dimensions, this representation breaks down in the absence of a real, four-dimensional Euclidean point-space to [151]serve as a picture. This does not in the least detract from the reality of the continuum which we are thus prevented from representing graphically in the accustomed fashion.

The Euclidean representation, in fact, may in some cases be unfortunate—it may be so entirely without significance as to be actually misleading. For in the Euclidean continuum of points, be it line, plane or three-space, there are certain things which we ordinarily regard as secondary derived properties, but which possess a great deal of significance none the less.

In particular, in the Euclidean plane and in Euclidean three-space, there is the distance between two points. I have indicated, in the chapter on non-Euclidean geometry, that the parallel postulate of Euclid, which distinguishes his geometry from others, could be replaced by any one of numerous other postulates. Grant Euclid’s postulate and you can prove any of these substitutes; grant any of the substitutes and you can prove Euclid’s postulate. Now it happens that there is one of these substitutes to which modern analysis has given a position of considerable importance. It is merely our good old friend the Pythagorean theorem, that the square on the hypotenuse equals the sum of the squares on the sides; but it is dressed in new clothes for the present occasion.

Mr. Francis’ discussion of this part of the subject, and especially his figure, ought to make it clear that this theorem can be considered as dealing with the distance between any two points. When we so consider it, and take it as the fundamental, defining postulate [152]of Euclidean geometry which distinguishes this geometry from others, we have a statement of considerable content. We have, first, that the characteristic property of Euclidean space is that the distance between two points is given by the square root of the sum of the squares of the coordinate-differences for these points—by the expression

where the large letters represent the coordinates of the one point and the small ones those of the other. We have more than this, however; we have that this distance is the same for all observers, no matter how different their values for the individual coordinates of the individual points. And we have, finally, as a direct result of looking upon the thing from this viewpoint, that the expression for D is an “invariant”; which simply means that every observer may use the same expression in calculating the value of D in terms of his own values for the coordinates involved. The distance between two points in our space is given numerically by the square root of the sum of the squares of my coordinate-differences for the two points involved; it is given equally by the square root of the sum of the squares of your coordinate-differences, or those of any other observer whatsoever. We have then a natural law—the fundamental natural law characterizing Euclidean space. If we wish to apply it to the Euclidean two-space (the plane) we have only to drop out the superfluous coordinate-difference; if we wish to see by analogy what would be the fundamental natural law for a [153]four-dimensional Euclidean space, we have only to introduce under the radical a fourth coordinate-difference for the fourth dimension.

If we were not able to attach any concrete meaning to the expression for D the value of all this would be materially lessened. Consider, for instance, the continuum of music notes. There is no distance between different notes. There is of course significance in talking about the difference in pitch, in intensity, in duration, in timbre, between two notes; but there is none in a mode of speech that implies a composite expression indicating how far one note escapes being identical with another in all four respects at once. The trouble, of course, is that the four dimensions of the music-note continuum are not measurable in terms of a common unit. If they were, we should expect to measure their combination more or less absolutely in terms of this same unit. We can make measurements in all three dimensions of Euclidean space with the same unit, with the same measuring rod in fact. [This presents a peculiarity of our three-space which is not possessed by all three-dimensional manifolds. Riemann has given another illustration in the system of all possible colors, composed of arbitrary proportions of the three primaries, red, green and violet. This system forms a three-dimensional continuum; but we cannot measure the “distance” or difference between two colors in terms of the difference between two others.]130

Accordingly, in spite of the fact that the Euclidean three-space gives us a formal representation of the color continuum, and in spite of the fact that the hypothetical four-dimensional Euclidean space would [154]perform a like office for the music-note continuum, this representation would be without significance. We should not say that the geometry of these two manifolds is Euclidean. We should realize that any set of numerical elements can be plotted in a Euclidean space of the appropriate dimensionality; and that accordingly, before allowing such a plot to influence us to classify the geometry of the given manifold as Euclidean, we must pause long enough to ask whether the rest of the Euclidean system fits into the picture. If the square root of the sum of the squares of the coordinate-differences between two elements possesses significance in the given continuum, and if it is invariant between observers of that continuum who employ different bases of reference, then and only then may we allege the Euclidean character of the given continuum.

If under this test the given continuum fails of Euclideanism, it is in order to ask what type of geometry it does present. If it is of such character that the “distance” between two elements possesses significance, we should answer this question by investigating that distance in the hope of discovering a non-Euclidean expression for it which will be invariant. If it is not of such character, we should seek some other characteristic of single elements or groups of elements, of real physical significance and of such sort that the numerical expression for it would be invariant.

If the continuum with which we have to do is one in which the “distance” between two elements possesses significance, and if it turns out that the invariant expression for this distance is not the Pythagorean [155]one, but one indicating the non-Euclideanism of our continuum, we say that this continuum has a “curvature.” This means that, if we interpret the elements of our continuum as points in space (which of course we may properly do) and if we then try to superpose this point-continuum upon a Euclidean continuum, it will not “go”; we shall be caught in some such absurdity as trying to force a sphere into coincidence with a plane. And of course if it won’t go, the only possible reason is that it is curved or distorted, like the sphere, in such a way as to prevent its going. It is unfortunate that the visualizing of such curvature requires the visualizing of an additional dimension for the curved continuum to curve into; so that while we can picture a curved surface easily enough, we can’t picture a curved three-space or four-space. But that is a barrier to visualization alone, and in no sense to understanding.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Albert Einstein (2020). Einstein's Theories of Relativity and Gravitation. Urbana, Illinois: Project Gutenberg. Retrieved October 2022.

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/cache/epub/63372/pg63372-images.html