paint-brush

This story draft by @einstein has not been reviewed by an editor, YET.

The Geometry of Gravitation

featured image - The Geometry of Gravitation
Albert Einstein HackerNoon profile picture

Einstein's Theories of Relativity and Gravitation by Albert Einstein, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. The Geometry of Gravitation

The Geometry of Gravitation

Let us consider a circular disc rotating with a uniform peripheral speed. According to the deductions from the “special theory” of relativity, an observer situated near the edge of this disc, but not rotating with it, will observe that units of length measured along the circumference of the disc are contracted. On the other hand, measurements along the diameter, which is at right angles to the direction of motion of the circumference, will show no contraction whatever, and, consequently the observer will find that the ratio of circumference to diameter has not the well known value 3.14159 … but exceeds this value, the difference being greater and greater as the peripheral speed approaches that of light. That is, the laws of ordinary geometry no longer hold true.

However, we know other cases in which the ordinary or Euclidean geometry is not applicable. Thus suppose that on the surface of a sphere we describe a series of concentric circles. Since the surface is curved, we are not surprised at finding [238]that the circumference of any one of these circles is less than 3.14159 … times the distance across the circle as measured on the surface of the sphere. What this means, therefore, is that we cannot use Euclidean geometry to describe measurements on the surface of a sphere, and every schoolboy knows this from comparing Mercator’s projection of the earth’s surface with the actual representation on a globe.

When we come to think of it, the reason we realize all this is because our sense of three dimensions enables us to differentiate flat surfaces from those that are curved. Let us, however, imagine a two-dimensional being living on the surface of a large sphere. So long as his measurements are confined to relatively small areas he will find it possible to describe all his measurements in terms of Euclidean geometry. As, however, his area of operation increases he will begin to observe greater and greater discrepancies. Being unfamiliar with the existence of such a three-dimensional object as a sphere, and therefore not realizing that he is on the surface of one, our intelligent two-dimensional being will conclude that the disturbance in his geometry is due to the action of a force, and by means of plausible assumptions on the “law” of this force he will reconcile his observations with the laws of plane geometry.

Now since an acceleration in a gravitational field is identical with that due to centrifugal force produced by rotation, we concluded that the geometry in a gravitational field must also be non-Euclidean. That is, space in the neighborhood of matter is [239]distorted or curved. The curvature of space bears the same relation to three dimensions that the curvature of a spherical surface bears to two dimensions, and that is why we do not perceive it, any more than the intelligent two-dimensional being would be aware of the distortion of his space (or surface). Furthermore, like this being, we have assumed the existence of a gravitational force to account for discrepancies in our geometrical measurements.

The identification in this manner of gravitational effects with geometrical curvature of space enables Einstein to derive a general law for the path of any particle in a gravitational field, with respect both to space and to time. Furthermore, the law expresses this motion in terms which are independent of the relative motion and position of the observer, and satisfies the condition that the fundamental laws of physics be equally valid for all observers. The solution of the problem involved the use of a new kind of higher calculus, elaborated by two Italian mathematicians, Ricci and Levi-Civita. The result is a law of motion which is extremely general in its validity.

For low velocities it approximates to Newton’s solution, and in the absence of a gravitational field it leads to the same conclusions as the special theory of relativity. There are three deductions from this law which have aroused a great deal of interest, and the confirmation of two of these by actual observation must be regarded as striking proof of Einstein’s theory.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Albert Einstein (2020). Einstein's Theories of Relativity and Gravitation. Urbana, Illinois: Project Gutenberg. Retrieved October 2022.

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/cache/epub/63372/pg63372-images.html