Table of Links Abstract and 1 Introduction Abstract and 1 Introduction 2 MindEye2 and 2.1 Shared-Subject Functional Alignment 2 MindEye2 and 2.1 Shared-Subject Functional Alignment 2.2 Backbone, Diffusion Prior, & Submodules 2.2 Backbone, Diffusion Prior, & Submodules 2.3 Image Captioning and 2.4 Fine-tuning Stable Diffusion XL for unCLIP 2.3 Image Captioning and 2.4 Fine-tuning Stable Diffusion XL for unCLIP 2.5 Model Inference 2.5 Model Inference 3 Results and 3.1 fMRI-to-Image Reconstruction 3 Results and 3.1 fMRI-to-Image Reconstruction 3.2 Image Captioning 3.2 Image Captioning 3.3 Image/Brain Retrieval and 3.4 Brain Correlation 3.3 Image/Brain Retrieval and 3.4 Brain Correlation 3.5 Ablations 3.5 Ablations 4 Related Work 4 Related Work 5 Conclusion 5 Conclusion 6 Acknowledgements and References 6 Acknowledgements and References A Appendix A Appendix A.1 Author Contributions A.1 Author Contributions A.2 Additional Dataset Information A.2 Additional Dataset Information A.3 MindEye2 (not pretrained) vs. MindEye1 A.3 MindEye2 (not pretrained) vs. MindEye1 A.4 Reconstruction Evaluations Across Varying Amounts of Training Data A.4 Reconstruction Evaluations Across Varying Amounts of Training Data A.5 Single-Subject Evaluations A.5 Single-Subject Evaluations A.6 UnCLIP Evaluation A.6 UnCLIP Evaluation A.7 OpenCLIP BigG to CLIP L Conversion A.7 OpenCLIP BigG to CLIP L Conversion A.8 COCO Retrieval A.8 COCO Retrieval A.9 Reconstruction Evaluations: Additional Information A.9 Reconstruction Evaluations: Additional Information A.10 Pretraining with Less Subjects A.10 Pretraining with Less Subjects A.11 UMAP Dimensionality Reduction A.11 UMAP Dimensionality Reduction A.12 ROI-Optimized Stimuli A.12 ROI-Optimized Stimuli A.13 Human Preference Experiments A.13 Human Preference Experiments A.10 Pretraining with Less Subjects To determine the relative impact of using additional subjects for pretraining, we separately fine-tuned a MindEye2 model for subject 1 (using 1 hour of their training data) that was pretrained only on subjects 2, 5, and 7 (these are the subjects who completed all 40 scanning sessions), as well as only on subject 5 (the subject whose single-subject model performed the best). Results in Table 10 show similar performance for these models compared to pretraining on the full set of available subjects, suggesting that the number of pretraining subjects does not seem to play a major role in subsequent fine-tuning performance. This paper is available on arxiv under CC BY 4.0 DEED license. This paper is available on arxiv under CC BY 4.0 DEED license. available on arxiv Authors: (1) Paul S. Scotti, Stability AI and Medical AI Research Center (MedARC); (2) Mihir Tripathy, Medical AI Research Center (MedARC) and a Core contribution; (3) Cesar Kadir Torrico Villanueva, Medical AI Research Center (MedARC) and a Core contribution; (4) Reese Kneeland, University of Minnesota and a Core contribution; (5) Tong Chen, The University of Sydney and Medical AI Research Center (MedARC); (6) Ashutosh Narang, Medical AI Research Center (MedARC); (7) Charan Santhirasegaran, Medical AI Research Center (MedARC); (8) Jonathan Xu, University of Waterloo and Medical AI Research Center (MedARC); (9) Thomas Naselaris, University of Minnesota; (10) Kenneth A. Norman, Princeton Neuroscience Institute; (11) Tanishq Mathew Abraham, Stability AI and Medical AI Research Center (MedARC). Authors: Authors: (1) Paul S. Scotti, Stability AI and Medical AI Research Center (MedARC); (2) Mihir Tripathy, Medical AI Research Center (MedARC) and a Core contribution; (3) Cesar Kadir Torrico Villanueva, Medical AI Research Center (MedARC) and a Core contribution; (4) Reese Kneeland, University of Minnesota and a Core contribution; (5) Tong Chen, The University of Sydney and Medical AI Research Center (MedARC); (6) Ashutosh Narang, Medical AI Research Center (MedARC); (7) Charan Santhirasegaran, Medical AI Research Center (MedARC); (8) Jonathan Xu, University of Waterloo and Medical AI Research Center (MedARC); (9) Thomas Naselaris, University of Minnesota; (10) Kenneth A. Norman, Princeton Neuroscience Institute; (11) Tanishq Mathew Abraham, Stability AI and Medical AI Research Center (MedARC).