paint-brush
Overview of Memotion 3: Sentiment & Emotion Analysis of Codemixed Hinglish - Conclusionby@memeology
109 reads

Overview of Memotion 3: Sentiment & Emotion Analysis of Codemixed Hinglish - Conclusion

tldt arrow

Too Long; Didn't Read

Analyzing codemixed Hindi-English memes: Memotion 3 paper presents AI sentiment, emotion, and intensity detection methods.

People Mentioned

Mention Thumbnail
featured image - Overview of Memotion 3: Sentiment & Emotion
Analysis of Codemixed Hinglish - Conclusion
Memeology: Leading Authority on the Study of Memes HackerNoon profile picture

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) Shreyash Mishra has an equal contribution from IIIT Sri City, India;

(2) S Suryavardan has an equal contribution from IIIT Sri City, India;

(3) Megha Chakraborty, University of South Carolina, USA;

(4) Parth Patwa, UCLA, USA;

(5) Anku Rani, University of South Carolina, USA;

(6) Aman Chadha, work does not relate to a position at Amazon from Stanford University, USA, or Amazon AI, USA;

(7) Aishwarya Reganti, CMU, USA;

(8) Amitava Das, University of South Carolina, USA;

(9) Amit Sheth, University of South Carolina, USA;

(10) Manoj Chinnakotla, Microsoft, USA;

(11) Asif Ekbal, IIT Patna, India;

(12) Srijan Kumar, Georgia Tech, USA.

Abstract & Introduction

Related Work

Task Details

Participating systems

Results

Conclusion and Future Work and References

6. Conclusion and Future Work

In this paper, we summarize the approaches used by the participants for the Memotion 3 task and analyze the results. Due to the multi-modal nature of the dataset, all teams use a pre-trained image and text embedding models. However, each team presents a novel model pipeline. The highest scores achieved in Task A, Task B and Task C of Memotion 3.0 are 34.41%, 79.77% and 59.82% respectively, which shows there is significant room for improvement. On analysis of the results and the mis-classified examples on the test set, we find that "Sarcasm" and "Humour" are difficult to identify, especially in code-mixed memes.


While we address Hind-English code-mixed memes in this paper, future work could include exploring other languages/language pairs. A unified baseline model to analyze memes in multiple languages could also be an interesting possibility.


References

[1] R. Dawkins, The selfish gene, Granada Publishing Lim, 1979.


[2] A. Marwick, Memes, Contexts 12 (2013) 12–13.


[3] N. Akhther, Internet memes as form of cultural discourse: A rhetorical analysis on facebook, 2018. doi:10.31234/osf.io/sx6t7.


[4] S. Suryawanshi, B. R. Chakravarthi, M. Arcan, P. Buitelaar, Multimodal meme dataset (MultiOFF) for identifying offensive content in image and text, in: TRAC, 2020.


[5] S. Mishra, S. Suryavardan, P. Patwa, M. Chakraborty, A. Rani, A. Reganti, A. Chadha, A. Das, A. Sheth, M. Chinnakotla, et al., Memotion 3: Dataset on sentiment and emotion analysis of codemixed hindi-english memes, arXiv preprint arXiv:2303.09892 (2023).


[6] C. Sharma, D. Bhageria, W. Scott, S. PYKL, A. Das, T. Chakraborty, et al., SemEval-2020 task 8: Memotion analysis- the visuo-lingual metaphor!, in: SemEval, 2020.


[7] P. Patwa, S. Ramamoorthy, N. Gunti, S. Mishra, S. Suryavardan, A. Reganti, A. Das, T. Chakraborty, A. Sheth, A. Ekbal, et al., Findings of memotion 2: Sentiment and emotion analysis of memes, in: Proceedings of De-Factify: Workshop on Multimodal Fact Checking and Hate Speech Detection, ceur, 2022.


[8] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: EMNLP, 2013.


[9] A. I. Saad, Opinion mining on us airline twitter data using machine learning techniques, in: 2020 16th international computer engineering conference (ICENCO), IEEE, 2020.


[10] M. Alzyout, E. A. Bashabsheh, H. Najadat, A. Alaiad, Sentiment analysis of arabic tweets about violence against women using machine learning, in: 12th ICICS, 2021.


[11] E. Prabhakar, M. Santhosh, A. H. Krishnan, T. Kumar, R. Sudhakar, Sentiment analysis of us airline twitter data using new adaboost approach, (IJERT) 7 (2019).


[12] S. T. Kokab, S. Asghar, S. Naz, Transformer-based deep learning models for the sentiment analysis of social media data, Array 14 (2022) 100157.


[13] S. G. Tesfagergish, J. Kapočiut¯ e-Dzikien ̇ e, R. Damaševičius, Zero-shot emotion detection ̇ for semi-supervised sentiment analysis using sentence transformers and ensemble learning, Applied Sciences (2022).


[14] K. L. Tan, C. P. Lee, K. M. Lim, K. S. M. Anbananthen, Sentiment analysis with ensemble hybrid deep learning model, IEEE Access 10 (2022) 103694–103704.


[15] L. Yue, W. Chen, X. Li, W. Zuo, M. Yin, A survey of sentiment analysis in social media, Knowledge and Information Systems 60 (2019).


[16] K. Chakraborty, S. Bhattacharyya, R. Bag, A survey of sentiment analysis from social media data, IEEE Transactions on Computational Social Systems 7 (2020) 450–464.


[17] L. Chiruzzo, S. Castro, M. Etcheverry, D. Garat, J. J. Prada, A. Rosá, Overview of haha at iberlef 2019: Humor analysis based on human annotation., in: IberLEF@ SEPLN, 2019.


[18] E. Öhman, M. Pàmies, K. Kajava, J. Tiedemann, Xed: A multilingual dataset for sentiment analysis and emotion detection, 2020. arXiv:2011.01612.


[19] F. A. Acheampong, C. Wenyu, H. Nunoo-Mensah, Text-based emotion detection: Advances, challenges, and opportunities, Engineering Reports (2020).


[20] Z. Waseem, D. Hovy, Hateful symbols or hateful people? predictive features for hate speech detection on Twitter, in: NAACL, 2016.


[21] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, et al., Semeval-2019 task 6: Identifying and categorizing offensive language in social media (offenseval), arXiv:1903.08983 (2019).


[22] P. Patwa, M. Bhardwaj, V. Guptha, G. Kumari, S. Sharma, S. PYKL, A. Das, A. Ekbal, M. S. Akhtar, T. Chakraborty, Overview of constraint 2021 shared tasks: Detecting english covid-19 fake news and hindi hostile posts, in: Combating Online Hostile Posts in Regional Languages during Emergency Situation, Springer International Publishing, 2021, pp. 42–53.


[23] R. Kumar, A. K. Ojha, S. Malmasi, M. Zampieri, Benchmarking aggression identification in social media, in: TRAC workshop, 2018.


[24] R. Kumar, A. K. Ojha, S. Malmasi, M. Zampieri, Evaluating aggression identification in social media, in: TRAC workshop, 2020.


[25] R. Kumar, S. Ratan, S. Singh, E. Nandi, L. N. Devi, et al., The ComMA dataset v0.2: Annotating aggression and bias in multilingual social media discourse, in: LREC, 2022.


[26] B. Gambäck, U. K. Sikdar, Using convolutional neural networks to classify hate-speech, in: Proceedings of the first workshop on abusive language online, 2017, pp. 85–90.


[27] A. Ribeiro, N. Silva, Inf-hateval at semeval-2019 task 5: Convolutional neural networks for hate speech detection against women and immigrants on twitter, in: SemEval, 2019.


[28] K. Winter, R. Kern, Know-center at semeval-2019 task 5: multilingual hate speech detection on twitter using cnns, in: Semeval, 2019.


[29] P. Patwa, S. Pykl, A. Das, P. Mukherjee, V. Pulabaigari, Hater-O-genius aggression classification using capsule networks, in: Proceedings of the 17th International Conference on Natural Language Processing (ICON), 2020.


[30] A. C. Mazari, N. Boudoukhani, A. Djeffal, Bert-based ensemble learning for multi-aspect hate speech detection, Cluster Computing (2023) 1–15.


[31] N. S. Samghabadi, P. Patwa, S. Pykl, P. Mukherjee, A. Das, T. Solorio, Aggression and misogyny detection using bert: A multi-task approach, in: Proceedings of the second workshop on trolling, aggression and cyberbullying, 2020.


[32] J. Risch, R. Krestel, Bagging BERT models for robust aggression identification, in: Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying, 2020.


[33] S. Nagar, F. A. Barbhuiya, K. Dey, Towards more robust hate speech detection: using social context and user data, Social Network Analysis and Mining 13 (2023) 47.


[34] A. Laddha, M. Hanoosh, D. Mukherjee, P. Patwa, A. Narang, Understanding chat messages for sticker recommendation in messaging apps, Proceedings of the AAAI Conference on Artificial Intelligence 34 (2020). doi:10.1609/aaai.v34i08.7019.


[35] A. Laddha, M. Hanoosh, D. Mukherjee, P. Patwa, A. Narang, Large scale multilingual sticker recommendation in messaging apps, AI Magazine 42 (2022). doi:10.1609/aaai.12023.


[36] P. Patwa, G. Aguilar, S. Kar, S. Pandey, S. PYKL, B. Gambäck, T. Chakraborty, T. Solorio, A. Das, SemEval-2020 task 9: Overview of sentiment analysis of code-mixed tweets, in: Proceedings of the Fourteenth Workshop on Semantic Evaluation, 2020.


[37] B. R. Chakravarthi, et al., Findings of the shared task on offensive language identification in Tamil, Malayalam, and Kannada, in: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages, 2021.


[38] B. R. Chakravarthi, V. Muralidaran, R. Priyadharshini, J. P. McCrae, Corpus creation for sentiment analysis in code-mixed tamil-english text, arXiv:2006.00206 (2020).


[39] B. R. Chakravarthi, N. Jose, S. Suryawanshi, E. Sherly, J. P. McCrae, A sentiment analysis dataset for code-mixed malayalam-english, arXiv preprint arXiv:2006.00210 (2020).


[40] A. Hande, R. Priyadharshini, B. R. Chakravarthi, KanCMD: Kannada CodeMixed dataset for sentiment analysis and offensive language detection, in: Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media, 2020.


[41] S. Dowlagar, R. Mamidi, Graph convolutional networks with multi-headed attention for code-mixed sentiment analysis, in: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages, 2021, pp. 65–72.


[42] J. Risch, A. Stoll, M. Ziegele, R. Krestel, hpidedis at germeval 2019: Offensive language identification using a german bert model., in: KONVENS, 2019.


[43] D. Tula, P. Potluri, S. Ms, S. Doddapaneni, P. Sahu, R. Sukumaran, P. Patwa, Bitions@DravidianLangTech-EACL2021: Ensemble of multilingual language models with pseudo labeling for offence detection in Dravidian languages, in: Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages, 2021.


[44] D. Tula, M. S. Shreyas, V. Reddy, P. Sahu, S. Doddapaneni, P. Potluri, R. Sukumaran, P. Patwa, Offence detection in dravidian languages using code-mixing index-based focal loss, SN Computer Science 3 (2022). doi:10.1007/s42979-022-01190-1.


[45] Y. Ma, L. Zhao, J. Hao, XLP at SemEval-2020 task 9: Cross-lingual models with focal loss for sentiment analysis of code-mixing language, in: Semeval, 2020.


[46] M. Ali, S. T. Kandukuri, S. Manduru, P. Patwa, A. Das, Pesto: Switching point based dynamic and relative positional encoding for code-mixed languages (student abstract), AAAI (2022). doi:10.1609/aaai.v36i11.21587.


[47] A. Hu, S. Flaxman, Multimodal sentiment analysis to explore the structure of emotions, in: KDD, 2018.


[48] R. Jha, V. Kaki, V. Kolla, S. Bhagat, P. Patwa, A. Das, S. Pal, Image2tweet: Datasets in Hindi and English for generating tweets from images, in: Proceedings of the 18th International Conference on Natural Language Processing (ICON), 2021.


[49] R. Gomez, J. Gibert, L. Gomez, D. Karatzas, Exploring hate speech detection in multimodal publications, 2019. arXiv:1910.03814.


[50] B. Zadeh, et al., Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph, in: ACL, 2018.


[51] D. Kiela, H. Firooz, A. Mohan, V. Goswami, A. Singh, P. Ringshia, D. Testuggine, The hateful memes challenge: Detecting hate speech in multimodal memes, Neurips (2020).


[52] S. Suryawanshi, B. R. Chakravarthi, Findings of the shared task on troll meme classification in Tamil, in: Speech and Language Technologies for Dravidian Languages, 2021.


[53] E. Hossain, O. Sharif, M. M. Hoque, MUTE: A multimodal dataset for detecting hateful memes, in: Proceedings of the 2nd AACL Student Research Workshop, 2022.


[54] Z. Xie, L. Liu, Y. Wu, L. Zhong, L. Li, Learning text-image joint embedding for efficient cross-modal retrieval with deep feature engineering, ACM Transactions on Information Systems 40 (2021) 1–27. URL: https://doi.org/10.1145%2F3490519. doi:10.1145/3490519.


[55] V. Krishna, S. Suryavardan, S. Mishra, S. Ramamoorthy, P. Patwa, M. Chakraborty, A. Chadha, A. Das, A. Sheth, Imaginator: Pre-trained image+text joint embeddings using word-level grounding of images, 2023. arXiv:2305.10438.


[56] N. Gunti, S. Ramamoorthy, P. Patwa, A. Das, Memotion analysis through the lens of joint embedding (student abstract), Proceedings of the AAAI Conference on Artificial Intelligence 36 (2022). doi:10.1609/aaai.v36i11.21616.


[57] J. Lu, D. Batra, D. Parikh, S. Lee, Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks, 2019. arXiv:1908.02265.


[58] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, K.-W. Chang, Visualbert: A simple and performant baseline for vision and language, 2019. arXiv:1908.03557.


[59] S. Ramamoorthy, N. Gunti, S. Mishra, S. Suryavardan, A. Reganti, P. Patwa, A. Das, T. Chakraborty, A. Sheth, A. Ekbal, et al., Memotion 2: Dataset on sentiment and emotion analysis of memes, in: Proceedings of De-Factify: Workshop on Multimodal Fact Checking and Hate Speech Detection, 2022.


[60] K. N. Phan, G.-S. Lee, H.-J. Yang, S.-H. Kim, Little flower at memotion 2.0 2022: Ensemble of multi-modal model using attention mechanism in memotion analysis, in: Proceedings of De-Factify: Workshop on Multimodal Fact Checking and Hate Speech Detection, 2022.


[61] T. Morishita, G. Morio, S. Horiguchi, H. Ozaki, T. Miyoshi, Hitachi at SemEval-2020 task 8: Simple but effective modality ensemble for meme emotion recognition, in: SemEval, 2020.


[62] Y. Guo, J. Huang, Y. Dong, M. Xu, Guoym at SemEval-2020 task 8: Ensemble-based classification of visuo-lingual metaphor in memes, in: SemEval, 2020.


[63] G.-A. Vlad, G.-E. Zaharia, D.-C. Cercel, et al., Upb at semeval-2020 task 8: Joint textual and visual modeling in a multi-task learning architecture for memotion analysis, 2020. arXiv:2009.02779.


[64] T. T. Nguyen, N. T. Pham, N. D. Nguyen, et al., Hcilab at memotion 2.0 2022: Analysis of sentiment, emotion and intensity of emotion classes from meme images using single and multi modalities, in: Proceedings of De-Factify: Workshop on Multimodal Fact Checking and Hate Speech Detection, 2022.


[65] G. G. Lee, M. Shen, Amazon pars at memotion 2.0 2022: Multi-modal multi-task learning for memotion 2.0 challenge, Proceedings of De-Factify: Workshop on Multimodal Fact Checking and Hate Speech Detection (2020).


[66] M. Bhange, N. Kasliwal, Hinglishnlp: Fine-tuned language models for hinglish sentiment detection, arXiv preprint arXiv:2008.09820 (2020).


[67] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv:2010.11929 (2020).


[68] W. Yu, D. Kolossa, wentaorub at Memotion 3: Ensemble learning for multi-modal meme classification, in: Proceedings of De-Factify 2: Workshop on Multimodal Fact Checking and Hate Speech Detection, CEUR, 2023.


[69] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, et al., Learning transferable visual models from natural language supervision, in: ICML, 2021.


[70] X. Li, X. Yin, C. Li, P. Zhang, et al., Oscar: Object-semantics aligned pre-training for vision-language tasks, 2020. arXiv:2004.06165.


[71] Y.-C. Tang, K.-D. Wang, T.-Y. Ou, W.-C. Peng, NYCU_TWO at Memotion 3: Good foundation, good teacher, then you have good meme analysis, in: Proceedings of De-Factify 2: Workshop on Multimodal Fact Checking and Hate Speech Detection, CEUR, 2023.


[72] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, 2021. arXiv:2103.14030.


[73] X. Guo, J. Ma, A. Zubiaga, NUAA-QMUL-AIIT at Memotion 3: Multi-modal fusion with squeeze-and-excitation for internet meme emotion analysis, in: Proceedings of De-Factify 2: Workshop on Multimodal Fact Checking and Hate Speech Detection, CEUR, 2023.


[74] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pretraining approach (2019).


[75] X. Zhai, J. Puigcerver, A. Kolesnikov, et al., A large-scale study of representation learning with the visual task adaptation benchmark, 2020. arXiv:1910.04867.


[76] G. Ke, Q. Meng, T. Finley, et al., Lightgbm: A highly efficient gradient boosting decision tree, in: Neurips, 2017.


[77] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: CVPR, 2016.


[78] F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A unified embedding for face recognition and clustering, in: CVPR, 2015.