According to the American Medical Association, physician burnout rate reached almost 63% in 2021, while professional fulfillment scores plummeted to 22%. This seems like the right time for the medical sector to look for a solution.
Whether you already have experience with AI or not, implementing natural language processing in healthcare can take some of the load off your employees’ shoulders and streamline your operations.
MarketsandMarkets reports that the global natural language processing in healthcare and life sciences market was valued at $2.2 billion in 2022 and is forecast to reach $7.2 billion by 2027. And this trend will continue as more medical organizations turn to NLP service companies to build custom solutions.
So, how is NLP used in healthcare, and how to deploy this technology? Keep reading to find out.
Natural language processing (NLP) is a branch of AI that uses algorithms to extract meaning from unstructured human language presented either in spoken or written format. NLP requires knowledge of computational linguistics and other machine learning skills.
Natural language processing is gaining popularity in healthcare as it can analyze large quantities of unstructured medical data, such as doctor notes, medical records, clinical trial reports, and even service reviews that patients post on social media. Research shows that about 80% of healthcare data is unstructured and not utilized to its full potential. NLP can change that by analyzing data and extracting insights to guide doctors and pharmacists to make more informed decisions.
Here are some of the main NLP techniques that are useful in healthcare settings:
After learning about what healthcare NLP is and how it works, let’s see how it can contribute to the healthcare field.
Research shows that physicians spend 16 minutes on EHRs on average for every patient they see. This time could have been spent caring for patients. Instead, it’s wasted on the screen and contributes to doctor burnout.
Natural language processing in healthcare can help physicians work with electronic health records (EHRs). Doctors can use speech-to-text conversion tools with built-in NLP capabilities to transcribe their notes and enter them into the corresponding patent’s EHR fields. Also, medical staff can query the NLP tools to extract relevant data from EHRs.
For instance, Nuance’s Dragon Medical One solution is a cloud-based speech recognition tool that helps medical personnel document patients’ stories in their EHRs. The company claims that deploying their solution will cut time spent on clinical documentation by half. Concord Hospital deployed Dragon Medical One, and 75% of employees reported more accurate clinical documentation.
NLP solutions can also analyze clinical documents and support physicians in real-time decision making. For instance, after analyzing doctor notes, the system can predict hospital bed demands, which gives hospital staff time to prepare and accommodate incoming patients.
Medical coding means deriving billable information from clinical notes and transferring it into standardized medical codes. Traditionally, a human coder would perform this task. But manual coding is slow and prone to error, meaning that the provider might not be able to claim and receive the full amount in compensations.
NLP-powered computer-assisted coding (CAC) tools can derive information from doctor notes and patient EHRs about different therapies and procedures they encountered, and provide the corresponding insurance codes to solidify claims.
One example of CAC natural language processing in healthcare is 3M 360 Encompass System. The company employs over 150 coding experts and remains up to date with the newest regulations. This solution assists coders by aggregating and analyzing patient documentation, offering auto-suggested tags and comprehensive review and approval tools.
Studies reveal that around 80% of clinical trials are delayed or terminated because they can’t recruit enough participants. Medical NLP can speed up recruitment by scanning patients’ medical data in search of eligible trial candidates. The technology can also help people who want to participate in clinical trials. It can transform eligibility criteria into questions, allowing candidates to filter through many trials fast.Headquartered in Canada, Inspirata built a solution that employs natural language processing in healthcare to facilitate patient recruitment. Its NLP engine mines clinical documents and transferred unstructured data into structured insights on patient eligibility.
Another successful NLP platform, Linguamatics NLP, can not only help recruit patients but also assist in trial design and site selection. It can parse a variety of sources, such as news feeds, patents, medical literature, and similar trial descriptions.
Refer to our article on AI in clinical trials to discover how other subdisciplines of AI contribute to this field.
Applying NLP in healthcare helps medical staff aggregate and analyze customer reviews and opinions from different social media platforms. Natural language processing tools can process thousands of reviews to gauge patients’ attitude towards the care they received. Such tools can identify aspects that frustrate patients, segment them based on frequency, and start implementing improvements for the most recurring negative feedback.
For instance, a comment such as “I waited for 30 minutes on the phone to talk to the receptionist” indicates a negative experience with the administrative staff.
Another way of benefiting from healthcare NLP in sentiment analysis is processing survey results. Instead of relying on social media, healthcare facilities can compose targeted surveys, distribute them among patients, and use NLP solutions to automatically review every response.
In a recent study, a team of researchers built an NLP solution that can scan survey results to determine how patients feel about their healthcare provider. The team designed a survey with open-ended questions, distributed it on vestibular schwannoma patients, and received 534 responses. The algorithm classified the responses into two groups — positive and negative sentiments. This classification had a 90% overlap with the manual classification produced by human experts.
Check out our blog article if you want to learn more about how sentiment analysis can boost your customer service.
To find effective candidate drugs, scientists need to identify the biological origins and understand the disease first. This includes reviewing large amounts of medical literature, patient data, and more. Natural language processing in healthcare can quickly sift through all this information, extract what is relevant, and present it to researchers in a compelling format so that they can learn about similar diseases and how they were treated.
For instance, Texas-based Lymba offers an AI-powered software that can assist in drug discovery by applying NLP to analyze unstructured data from multiple sources, such as gene cards, PubMed publications, proprietary global research data repositories, clinical trial documentation, and more. After absorbing the available disease-related knowledge, the tool builds an ontology of existing drugs that highlights promising research areas to discover new effective drugs.
Additionally, NLP can analyze social media feeds and patients’ medical records to gauge adverse effects of different drugs. Some tools can even correlate a drug’s side effects to the dosage consumed and the frequency of use.
For more exciting applications of AI in drug discovery you can refer to our blog.
Applying natural language processing in healthcare has many benefits. But if you decide to enhance your practice with this technology, here are the challenges that you are likely to encounter.
Doctors have their specific way of writing clinical notes and other medical documents. This style is typically heavy with jargon, acronyms, and abbreviations, and has limited context. To add to the confusion, a third of the clinical abbreviations present in the Unified Medical Language System Metathesaurus have several meanings each.
Even words that are spelled out in full can be confusing. For instance, “discharge” can either mean release from a hospital or bodily fluids, depending on the context.
And if you want to extend the application of NLP in healthcare beyond your clinic and use it to analyze patient’s feedback on social media, then you need to familiarize it with the specific abbreviations and emoticons that people use to express their emotions instead of words.
If you acquire ready-made general-purpose NLP algorithms, you will need to retrain them to operate in healthcare settings. And even better, familiarize them with the vocabulary used by your doctors.
It’s relatively easy to deploy NLP algorithms to spot terms that are explicitly mentioned and unambiguous. But human language is not always that straightforward. Sometimes, algorithms will need to deal with the following:
Decide on how advanced your algorithms need to be based on the target business cases. And if you opt for more basic solutions, be aware of their limitations.
Like any other AI technology, NLP in the medical field can acquire different types of bias during training on unbalanced datasets or when it continues to learn on the job. Gender bias is one of the most prominent types in natural language processing-based tools. For example, GPT-3 tends to associate males with jobs that require high-level education, such as a doctor, while females are connected to less knowledge-intensive occupations, like a nurse.
Unfortunately, AI bias is not uncommon in healthcare. For example, an algorithm that was supposed to determine the severity of patients’ illness significantly downplayed the level of care required for black patients just because, historically, more money was spent on white patients’ needs.
It can be hard to spot bias when the algorithms are “black box” models that don’t explain how they arrive at their conclusions. One solution to this issue is to deploy explainable AI. With this technology, healthcare natural language processing tools justify their recommendations, allowing you to verify whether they are biased or not.
Another way to spot bias is using a curated dataset that scientists designed to detect specific types of bias. This solution is not scalable to large applications but works well with limited usage.
In addition to the three NLP-specific challenges presented above, you might encounter general obstacles associated with implementing any AI-powered technology, such as:
For a more detailed explanation, check our article on top AI implementation challenges.
If you want to use NLP in healthcare, you can follow these steps:
NLP has many applications in healthcare. It can help save time on medical coding, facilitate recruiting participants for clinical trials, keep patients happy through sentiment analysis, and much more.
To successfully deploy natural language processing in healthcare, dedicate time to finding a trusted machine learning vendor who has experience in the medical field. A tech partner will help you with:
Looking to enhance your medical practice with NLP? Drop us a line! We will help you build a compliant solution tailored to your internal systems and vocabulary.
Also published here.