453 reads
453 reads

MindEye2: Shared-Subject Models Enable fMRI-To-Image With 1 Hour of Data: Single-Subject Evaluations

by Image RecognitionApril 15th, 2025
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

In this section, we show more exhaustive evaluation metrics computed for every subject individually using 40 hours and 1 hour of fine-tuning data, respectively.
featured image - MindEye2: Shared-Subject Models Enable fMRI-To-Image With 1 Hour of Data: Single-Subject Evaluations
Image Recognition HackerNoon profile picture
0-item

Abstract and 1 Introduction

2 MindEye2 and 2.1 Shared-Subject Functional Alignment

2.2 Backbone, Diffusion Prior, & Submodules

2.3 Image Captioning and 2.4 Fine-tuning Stable Diffusion XL for unCLIP

2.5 Model Inference

3 Results and 3.1 fMRI-to-Image Reconstruction

3.2 Image Captioning

3.3 Image/Brain Retrieval and 3.4 Brain Correlation

3.5 Ablations

4 Related Work

5 Conclusion

6 Acknowledgements and References


A Appendix

A.1 Author Contributions

A.2 Additional Dataset Information

A.3 MindEye2 (not pretrained) vs. MindEye1

A.4 Reconstruction Evaluations Across Varying Amounts of Training Data

A.5 Single-Subject Evaluations

A.6 UnCLIP Evaluation

A.7 OpenCLIP BigG to CLIP L Conversion

A.8 COCO Retrieval

A.9 Reconstruction Evaluations: Additional Information

A.10 Pretraining with Less Subjects

A.11 UMAP Dimensionality Reduction

A.12 ROI-Optimized Stimuli

A.13 Human Preference Experiments

A.5 Single-Subject Evaluations

Tables 7 and 8 show more exhaustive evaluation metrics computed for every subject individually using 40-hours and 1-hour of fine-tuning data respectively.


Table 7: Single subject quantitative results for 40 sessions of training data.


Table 8: Single subject quantitative results for 1 session of training data.


This paper is available on arxiv under CC BY 4.0 DEED license.

Authors:

(1) Paul S. Scotti, Stability AI and Medical AI Research Center (MedARC);

(2) Mihir Tripathy, Medical AI Research Center (MedARC) and a Core contribution;

(3) Cesar Kadir Torrico Villanueva, Medical AI Research Center (MedARC) and a Core contribution;

(4) Reese Kneeland, University of Minnesota and a Core contribution;

(5) Tong Chen, The University of Sydney and Medical AI Research Center (MedARC);

(6) Ashutosh Narang, Medical AI Research Center (MedARC);

(7) Charan Santhirasegaran, Medical AI Research Center (MedARC);

(8) Jonathan Xu, University of Waterloo and Medical AI Research Center (MedARC);

(9) Thomas Naselaris, University of Minnesota;

(10) Kenneth A. Norman, Princeton Neuroscience Institute;

(11) Tanishq Mathew Abraham, Stability AI and Medical AI Research Center (MedARC).


Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks