Table of Links
2 MindEye2 and 2.1 Shared-Subject Functional Alignment
2.2 Backbone, Diffusion Prior, & Submodules
2.3 Image Captioning and 2.4 Fine-tuning Stable Diffusion XL for unCLIP
3 Results and 3.1 fMRI-to-Image Reconstruction
3.3 Image/Brain Retrieval and 3.4 Brain Correlation
6 Acknowledgements and References
A Appendix
A.2 Additional Dataset Information
A.3 MindEye2 (not pretrained) vs. MindEye1
A.4 Reconstruction Evaluations Across Varying Amounts of Training Data
A.5 Single-Subject Evaluations
A.7 OpenCLIP BigG to CLIP L Conversion
A.9 Reconstruction Evaluations: Additional Information
A.10 Pretraining with Less Subjects
A.11 UMAP Dimensionality Reduction
A.13 Human Preference Experiments
A.2 Additional Dataset Information
fMRI responses correspond to normalized single-trial betas output from GLMSingle (Prince et al., 2022). We use preprocessed flattened fMRI voxels in 1.8-mm native volume space corresponding to the “nsdgeneral” brain region, defined by the NSD authors as the subset of voxels in posterior cortex most responsive to the visual stimuli presented (between 13,000 to 16,000 voxels per participant). MindEye2 was developed using a training and test set of subject 1’s data, with other subjects’ data untouched until final training of models. The fMRI data from both the training and test set was normalized using a voxel-wise Z-scoring procedure using the mean and standard deviation calculated using only the training set. Despite the shared1000 test trials being distributed across the scanning sessions for each subject, we chose to keep the test set consistent no matter the number of sessions being used for training. We also adjusted the number of training sessions after the normalization step, allowing us to keep the statistical properties of the shared1000 test set consistent between experiments with varying amounts of training data. This may inadvertently give a small normalization advantage to models trained with fewer training sessions, as the models are normalized with additional data not made available for training.
This paper is available on arxiv under CC BY 4.0 DEED license.
Authors:
(1) Paul S. Scotti, Stability AI and Medical AI Research Center (MedARC);
(2) Mihir Tripathy, Medical AI Research Center (MedARC) and a Core contribution;
(3) Cesar Kadir Torrico Villanueva, Medical AI Research Center (MedARC) and a Core contribution;
(4) Reese Kneeland, University of Minnesota and a Core contribution;
(5) Tong Chen, The University of Sydney and Medical AI Research Center (MedARC);
(6) Ashutosh Narang, Medical AI Research Center (MedARC);
(7) Charan Santhirasegaran, Medical AI Research Center (MedARC);
(8) Jonathan Xu, University of Waterloo and Medical AI Research Center (MedARC);
(9) Thomas Naselaris, University of Minnesota;
(10) Kenneth A. Norman, Princeton Neuroscience Institute;
(11) Tanishq Mathew Abraham, Stability AI and Medical AI Research Center (MedARC).