Video Instance Matting: Comparing Temporal Consistency and Detail Preservation

Written by instancing | Published 2025/12/23
Tech Story Tags: deep-learning | video-matting-qualitative | temporal-consistency | video-instance-matting | alpha-value-stability | sparsemat-comparison | instmatt | xmem-propagation

TLDRMaGGIe balances temporal consistency and detail preservation, outperforming SparseMat in accuracy and matching InstMatt's high-fidelity outputvia the TL;DR App

Abstract and 1. Introduction

  1. Related Works

  2. MaGGIe

    3.1. Efficient Masked Guided Instance Matting

    3.2. Feature-Matte Temporal Consistency

  3. Instance Matting Datasets

    4.1. Image Instance Matting and 4.2. Video Instance Matting

  4. Experiments

    5.1. Pre-training on image data

    5.2. Training on video data

  5. Discussion and References

Supplementary Material

  1. Architecture details

  2. Image matting

    8.1. Dataset generation and preparation

    8.2. Training details

    8.3. Quantitative details

    8.4. More qualitative results on natural images

  3. Video matting

    9.1. Dataset generation

    9.2. Training details

    9.3. Quantitative details

    9.4. More qualitative results

9.4. More qualitative results

For a more immersive and detailed understanding of our model’s performance, we recommend viewing the examples on our website which includes comprehensive results and comparisons with previous methods. Additionally, we have highlighted outputs from specific frames in Fig. 19.

Regarding temporal consistency, SparseMat and our framework exhibit comparable results, but our model demonstrates more accurate outcomes. Notably, our output maintains a level of detail on par with InstMatt, while ensuring consistent alpha values across the video, particularly in background and foreground regions. This balance between detail preservation and temporal consistency highlights the advanced capabilities of our model in handling the complexities of video instance matting.

For each example, the first-frame human masks are generated by r101 fpn 400e and propagated by XMem for the rest of the video.

Authors:

(1) Chuong Huynh, University of Maryland, College Park ([email protected]);

(2) Seoung Wug Oh, Adobe Research (seoh,[email protected]);

(3) Abhinav Shrivastava, University of Maryland, College Park ([email protected]);

(4) Joon-Young Lee, Adobe Research ([email protected]).


This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.


Written by instancing | Pioneering instance management, driving innovative solutions for efficient resource utilization, and enabling a more sus
Published by HackerNoon on 2025/12/23