THE MOVEMENTS AND HABITS OF PLANTS

Written by charlesdarwin | Published 2023/01/15
Tech Story Tags: non-fiction | literature | hackernoon-books | project-gutenberg | books | charles-darwin | ebooks | darwinism

TLDRThe most widely prevalent movement is essentially of the same nature as that of the stem of a climbing plant, which bends successively to all points of the compass, so that the tip revolves. This movement has been called by Sachs “revolving nutation”; but we have found it much more convenient to use the terms circumnutation and circumnutate. As we shall have to say much about this movement, it will be useful here briefly to describe its nature. If we observe a circumnutating stem, which happens at the time to be bent, we will say toward the north, it will be found gradually to bend more and more easterly, until it faces the east; and so onward to the south, then to the west, and back again to the north. If the movement had been quite regular, the apex would have described a circle, or rather, as the stem is always growing upward, a circular spiral. But it generally describes irregular elliptical or oval figures; for the apex, after pointing in any one direction, commonly moves back to the opposite side, not, however, returning along2 the same line. Afterward other irregular ellipses or ovals are successively described, with their longer axes directed to different points of the compass. While describing such figures, the apex often travels in a zigzag line, or makes small subordinate loops or triangles. In the case of leaves the ellipses are generally narrow.via the TL;DR App

Darwinism, Stated by Darwin himself, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. THE MOVEMENTS AND HABITS OF PLANTS

THE MOVEMENTS AND HABITS OF PLANTS.

The most widely prevalent movement is essentially of the same nature as that of the stem of a climbing plant, which bends successively to all points of the compass, so that the tip revolves. This movement has been called by Sachs “revolving nutation”; but we have found it much more convenient to use the terms circumnutation and circumnutate. As we shall have to say much about this movement, it will be useful here briefly to describe its nature. If we observe a circumnutating stem, which happens at the time to be bent, we will say toward the north, it will be found gradually to bend more and more easterly, until it faces the east; and so onward to the south, then to the west, and back again to the north. If the movement had been quite regular, the apex would have described a circle, or rather, as the stem is always growing upward, a circular spiral. But it generally describes irregular elliptical or oval figures; for the apex, after pointing in any one direction, commonly moves back to the opposite side, not, however, returning along2 the same line. Afterward other irregular ellipses or ovals are successively described, with their longer axes directed to different points of the compass. While describing such figures, the apex often travels in a zigzag line, or makes small subordinate loops or triangles. In the case of leaves the ellipses are generally narrow.
Even the stems of seedlings before they have broken through the ground, as well as their buried radicles, circumnutate, as far as the pressure of the surrounding earth permits. In this universally present movement we have the basis or groundwork for the acquirement, according to the requirements of the plant, of the most diversified movements.
THE MOVEMENT OF PLANTS IN RELATION TO THEIR WANTS.
The most interesting point in the natural history of climbing plants is the various kinds of movement which they display in manifest relation to their wants. The most different organs—stems, branches, flower-peduncles, petioles, mid-ribs of the leaf and leaflets, and apparently aërial roots—all possess this power.
1. The first action of a tendril is to place itself in a proper position. For instance, the tendril of Cobæa first rises vertically up, with its branches divergent and with the terminal hooks turned outward; the young shoot at the extremity of the stem is at the same time bent to one side, so as to be out of the way. The young leaves of clematis, on the other hand, prepare for action by temporarily curving themselves downward, so as to serve as grapnels.
2. If a twining plant or a tendril gets by any accident into an inclined position, it soon bends upward, though3 secluded from the light. The guiding stimulus no doubt is the attraction of gravity, as Andrew Knight showed to be the case with germinating plants. If a shoot of any ordinary plant be placed in an inclined position in a glass of water in the dark, the extremity will, in a few hours, bend upward; and, if the position of the shoot be then reversed, the downward-bent shoot reverses its curvature; but if the stolon of a strawberry, which has no tendency to grow upward, be thus treated, it will curve downward in the direction of, instead of in opposition to, the force of gravity. As with the strawberry, so it is generally with the twining shoots of the Hibbertia dentata, which climbs laterally from bush to bush; for these shoots, if placed in a position inclined downward, show little and sometimes no tendency to curve upward.
3. Climbing plants, like other plants, bend toward the light by a movement closely analogous to the incurvation which causes them to revolve, so that their revolving movement is often accelerated or retarded in traveling to or from the light. On the other hand, in a few instances tendrils bend toward the dark.
4. We have the spontaneous revolving movement which is independent of any outward stimulus, but is contingent on the youth of the part, and on vigorous health; and this again, of course, depends on a proper temperature and other favorable conditions of life.
5. Tendrils, whatever their homological nature may be, and the petioles or tips of the leaves of leaf-climbers, and apparently certain roots, all have the power of movement when touched, and bend quickly toward the touched side. Extremely slight pressure often suffices. If the pressure be not permanent, the part in question straightens itself and is again ready to bend on being touched.
6. Tendrils, soon after clasping a support, but not4 after a mere temporary curvature, contract spirally. If they have not come into contact with any object, they ultimately contract spirally, after ceasing to revolve; but in this case the movement is useless, and occurs only after a considerable lapse of time.
With respect to the means by which these various movements are effected, there can be little doubt, from the researches of Sachs and H. de Vries, that they are due to unequal growth; but, from the reasons already assigned, I can not believe that this explanation applies to the rapid movements from a delicate touch.
Finally, climbing plants are sufficiently numerous to form a conspicuous feature in the vegetable kingdom, more especially in tropical forests. America, which so abounds with arboreal animals, as Mr. Bates remarks, likewise abounds, according to Mohl and Palm, with climbing plants; and, of the tendril-bearing plants examined by me, the highest developed kinds are natives of this grand continent, namely, the several species of Bignonia, Eccremocarpus, Cobæa, and Ampelopsis. But even in the thickets of our temperate regions the number of climbing species and individuals is considerable, as will be found by counting them.
It has often been vaguely asserted that plants are distinguished from animals by not having the power of movement. It should rather be said that plants acquire and display this power only when it is of some advantage to them; this being of comparatively rare occurrence, as they are affixed to the ground, and food is brought to them by the air and rain. We see how high in the scale of organization a plant may rise,5 when we look at one of the more perfect tendril-bearers. It first places its tendrils ready for action, as a polypus places its tentacula. If the tendril be displaced, it is acted on by the force of gravity and rights itself. It is acted on by the light, and bends toward or from it, or disregards it, whichever maybe most advantageous. During several days the tendrils or internodes, or both, spontaneously revolve with a steady motion. The tendril strikes some object, and quickly curls round and firmly grasps it. In the course of some hours it contracts into a spire, dragging up the stem, and forming an excellent spring. All movements now cease. By growth the tissues soon become wonderfully strong and durable. The tendril has done its work, and has done it in an admirable manner.
* * * * *
It is impossible not to be struck with the resemblance between the foregoing movements of plants and many of the actions performed unconsciously by the lower animals. With plants an astonishingly small stimulus suffices; and even with allied plants one may be highly sensitive to the slightest continued pressure, and another highly sensitive to a slight momentary touch. The habit of moving at certain periods is inherited both by plants and animals; and several other points of similitude have been specified. But the most striking resemblance is the localization of their sensitiveness, and the transmission of an influence from the excited part to another which consequently moves. Yet plants do not, of course, possess nerves or a central nervous system; and we may infer that with animals such structures serve only for the more perfect transmission of impressions, and for the more complete intercommunication of the several parts.
6
ADVANTAGES OF CROSS-FERTILIZATION.
There are two important conclusions which may be deduced from my observations: 1. That the advantages of cross-fertilization do not follow from some mysterious virtue in the mere union of two distinct individuals, but from such individuals having been subjected during previous generations to different conditions, or to their having varied in a manner commonly called spontaneous, so that in either case their sexual elements have been in some degree differentiated; and, 2. That the injury from self-fertilization follows from the want of such differentiation in the sexual elements. These two propositions are fully established by my experiments. Thus, when plants of the Ipomœa and of the Mimulus, which had been self-fertilized for the seven previous generations, and had been kept all the time under the same conditions, were intercrossed one with another, the offspring did not profit in the least by the cross.
* * * * *
The curious cases of plants which can fertilize and be fertilized by any other individual of the same species, but are altogether sterile with their own pollen, become intelligible, if the view here propounded is correct, namely, that the individuals of the same species growing in a state of nature near together have not really been subjected during several previous generations to quite the same conditions.
POTENCY OF THE SEXUAL ELEMENTS IN PLANTS.
It is obvious that the exposure of two sets of plants during several generations to different conditions can lead to no beneficial results, as far as7 crossing is concerned, unless their sexual elements are thus affected. That every organism is acted on to a certain extent by a change in its environment will not, I presume, be disputed. It is hardly necessary to advance evidence on this head; we can perceive the difference between individual plants of the same species which have grown in somewhat more shady or sunny, dry or damp places. Plants which have been propagated for some generations under different climates or at different seasons of the year transmit different constitutions to their seedlings. Under such circumstances, the chemical constitution of their fluids and the nature of their tissues are often modified. Many other such facts could be adduced. In short, every alteration in the function of a part is probably connected with some corresponding, though often quite imperceptible, change in structure or composition.
Whatever affects an organism in any way, likewise tends to act on its sexual elements. We see this in the inheritance of newly acquired modifications, such as those from the increased use or disuse of a part, and even from mutilations if followed by disease. We have abundant evidence how susceptible the reproductive system is to changed conditions, in the many instances of animals rendered sterile by confinement; so that they will not unite, or, if they unite, do not produce offspring, though the confinement may be far from close; and of plants rendered sterile by cultivation. But hardly any cases afford more striking evidence how powerfully a change in the conditions of life acts on the sexual elements than those already given, of plants which are completely self-sterile in one country, and, when brought to another, yield, even in the first generation, a fair supply of self-fertilized seeds.
8
But it may be said, granting that changed conditions act on the sexual elements, How can two or more plants growing close together, either in their native country or in a garden, be differently acted on, inasmuch as they appear to be exposed to exactly the same conditions?
EXPERIMENTS IN CROSSING.
In my experiments with Digitalis purpurea, some flowers on a wild plant were self-fertilized, and others were crossed with pollen from another plant growing within two or three feet distance. The crossed and self-fertilized plants raised from the seeds thus obtained produced flower-stems in number as 100 to 47, and in average height as 100 to 70. Therefore, the cross between these two plants was highly beneficial; but how could their sexual elements have been differentiated by exposure to different conditions? If the progenitors of the two plants had lived on the same spot during the last score of generations, and had never been crossed with any plant beyond the distance of a few feet, in all probability their offspring would have been reduced to the same state as some of the plants in my experiments—such as the intercrossed plants of the ninth generation of Ipomœa, or the self-fertilized plants of the eighth generation of Mimulus, or the offspring from flowers on the same plant; and in this case a cross between the two plants of Digitalis would have done no good. But seeds are often widely dispersed by natural means, and one of the above two plants, or one of their ancestors, may have come from a distance, from a more shady or sunny, dry or moist place, or from a different kind of soil containing other organic seeds or inorganic matter.
9
Seeds often lie dormant for several years in the ground, and germinate when brought near the surface by any means, as by burrowing animals. They would probably be affected by the mere circumstance of having long lain dormant; for gardeners believe that the production of double flowers, and of fruit, is thus influenced. Seeds, moreover, which were matured during different seasons will have been subjected during the whole course of their development to different degrees of heat and moisture.
It has been shown that pollen is often carried by insects to a considerable distance from plant to plant. Therefore, one of the parents or ancestors of our two plants of Digitalis may have been crossed by a distant plant growing under somewhat different conditions. Plants thus crossed often produce an unusually large number of seeds; a striking instance of this fact is afforded by the Bignonia, which was fertilized by Fritz Müller with pollen from some adjoining plants and set hardly any seed, but, when fertilized with pollen from a distant plant, was highly fertile. Seedlings from a cross of this kind grow with great vigor, and transmit their vigor to their descendants. These, therefore, in the struggle for life, will generally beat and exterminate the seedlings from plants which have long grown near together under the same conditions, and will thus tend to spread.
PRACTICAL APPLICATION OF THESE VIEWS.
Under a practical point of view, agriculturists and horticulturists may learn something from the conclusions at which we have arrived. Firstly,10 we see that the injury from the close breeding of animals and from the self-fertilization of plants does not necessarily depend on any tendency to disease or weakness of constitution common to the related parents, and only indirectly on their relationship, in so far as they are apt to resemble each other in all respects, including their sexual nature. And, secondly, that the advantages of cross-fertilization depend on the sexual elements of the parents having become in some degree differentiated by the exposure of their progenitors to different conditions, or from their having intercrossed with individuals thus exposed; or, lastly, from what we call in our ignorance spontaneous variation. He therefore who wishes to pair closely related animals ought to keep them under conditions as different as possible.
* * * * *
As some kinds of plants suffer much more from self-fertilization than do others, so it probably is with animals from too close interbreeding. The effects of close interbreeding on animals, judging again from plants, would be deterioration in general vigor, including fertility, with no necessary loss of excellence of form; and this seems to be the usual result.
It is a common practice with horticulturists to obtain seeds from another place having a very different soil, so as to avoid raising plants for a long succession of generations under the same conditions; but, with all the species which freely intercross by the aid of insects or the wind, it would be an incomparably better plan to obtain seeds of the required variety, which had been raised for some generations under as different conditions as possible, and sow them in alternate rows with seeds matured in the old garden. The two stocks would then intercross, with a thorough blending of their whole organizations, and with11 no loss of purity to the variety; and this would yield far more favorable results than a mere exchange of seeds. We have seen in my experiments how wonderfully the offspring profited in height, weight, hardiness, and fertility, by crosses of this kind. For instance, plants of Ipomœa thus crossed were to the intercrossed plants of the same stock, with which they grew in competition, as 100 to 78 in height, and as 100 to 51 in fertility; and plants of Eschscholtzia similarly compared were as 100 to 45 in fertility. In comparison with self-fertilized plants the results are still more striking; thus cabbages derived from a cross with a fresh stock were to the self-fertilized as 100 to 22 in weight.
Florists may learn, from the four cases which have been fully described, that they have the power of fixing each fleeting variety of color, if they will fertilize the flowers of the desired kind with their own pollen for half a dozen generations, and grow the seedlings under the same conditions. But a cross with any other individual of the same variety must be carefully prevented, as each has its own peculiar constitution. After a dozen generations of self-fertilization, it is probable that the new variety would remain constant even if grown under somewhat different conditions; and there would no longer be any necessity to guard against intercrosses between the individuals of the same variety.
With respect to mankind, my son George has endeavored to discover by a statistical investigation whether the marriages of first cousins are at all injurious, although this is a degree of relationship which would not be objected to in our domestic animals; and he has come to the conclusion from his own researches,12 and those of Dr. Mitchell, that the evidence as to any evil thus caused is conflicting, but on the whole points to its being very small. From the facts given in this volume we may infer that with mankind the marriages of nearly related persons, some of whose parents and ancestors had lived under very different conditions, would be much less injurious than that of persons who had always lived in the same place and followed the same habits of life. Nor can I see reason to doubt that the widely different habits of life of men and women in civilized nations, especially among the upper classes, would tend to counterbalance any evil from marriages between healthy and somewhat closely related persons.
Under a theoretical point of view it is some gain to science to know that numberless structures in hermaphrodite plants, and probably in hermaphrodite animals, are special adaptations for securing an occasional cross between two individuals; and that the advantages from such a cross depend altogether on the beings which are united, or their progenitors, having had their sexual elements somewhat differentiated, so that the embryo is benefited in the same manner as is a mature plant or animal by a slight change in its conditions of life, although in a much higher degree.
Another and more important result may be deduced from my observations. Eggs and seeds are highly serviceable as a means of dissemination, but we now know that fertile eggs can be produced without the aid of the male. There are also many other methods by which organisms can be propagated asexually. Why then have the two sexes been developed, and why do males exist13 which can not themselves produce offspring? The answer lies, as I can hardly doubt, in the great good which is derived from the fusion of two somewhat differentiated individuals; and with the exception of the lowest organisms this is possible only by means of the sexual elements, these consisting of cells separated from the body, containing the germs of every part, and capable of being fused completely together.
It has been shown in the present volume that the offspring from the union of two distinct individuals, especially if their progenitors have been subjected to very different conditions, have an immense advantage in height, weight, constitutional vigor and fertility over the self-fertilized offspring from one of the same parents. And this fact is amply sufficient to account for the development of the sexual elements, that is, for the genesis of the two sexes.
It is a different question why the two sexes are sometimes combined in the same individual, and are sometimes separated. As with many of the lowest plants and animals the conjugation of two individuals, which are either quite similar or in some degree different is a common phenomenon, it seems probable, as remarked in the last chapter, that the sexes were primordially separate. The individual which receives the contents of the other, may be called the female; and the other, which is often smaller and more locomotive, may be called the male; though these sexual names ought hardly to be applied as long as the whole contents of the two forms are blended into one. The object gained by the two sexes becoming united in the same hermaphrodite form probably is to allow of occasional or frequent self-fertilization, so as to insure the propagation of the species, more especially in the case of organisms affixed for life to the same spot.14 There does not seem to be any great difficulty in understanding how an organism, formed by the conjugation of two individuals which represented the two incipient sexes, might have given rise by budding first to a monœcious and then to an hermaphrodite form; and in the case of animals even without budding to an hermaphrodite form, for the bilateral structure of animals perhaps indicates that they were aboriginally formed by the fusion of two individuals.
It is a more difficult problem why some plants, and apparently all the higher animals, after becoming hermaphrodites, have since had their sexes reseparated. This separation has been attributed by some naturalists to the advantages which follow from a division of physiological labor. The principle is intelligible when the same organ has to perform at the same time diverse functions; but it is not obvious why the male and female glands, when placed in different parts of the same compound or simple individual, should not perform their functions equally well as when placed in two distinct individuals. In some instances the sexes may have been reseparated for the sake of preventing too frequent self-fertilization; but this explanation does not seem probable, as the same end might have been gained by other and simpler means, for instance, dichogamy. It may be that the production of the male and female reproductive elements and the maturation of the ovules was too great a strain and expenditure of vital force for a single individual to withstand, if endowed with a highly complex organization; and that at the same time there was no need for all the individuals to produce young, and consequently15 that no injury, on the contrary, good, resulted from half of them, or the males, failing to produce offspring.
COMPARATIVE FERTILITY OF MALE AND FEMALE PLANTS.
Thirteen bushes (of the spindle-tree) growing near one another in a hedge consisted of eight females quite destitute of pollen, and of five hermaphrodites with well-developed anthers. In the autumn the eight females were well covered with fruit, excepting one which bore only a moderate number. Of the five hermaphrodites, one bore a dozen or two fruits, and the remaining four bushes several dozen; but their number was as nothing compared with those on the female bushes, for a single branch, between two and three feet in length, from one of the latter, yielded more than any one of the hermaphrodite bushes. The difference in the amount of fruit produced by the two sets of bushes is all the more striking, as from the sketches above given it is obvious that the stigmas of the polleniferous flowers can hardly fail to receive their own pollen; while the fertilization of the female flowers depends on pollen being brought to them by flies and the smaller Hymenoptera, which are far from being such efficient carriers as bees.
I now determined to observe more carefully during successive seasons some bushes growing in another place about a mile distant. As the female bushes were so highly productive, I marked only two of them with the letters A and B, and five polleniferous bushes with the letters C to G. I may premise that the year 1865 was highly favorable for the fruiting of all the bushes, especially for the polleniferous ones, some of which were16 quite barren, except under such favorable conditions. The season of 1864 was unfavorable. In 1863 the female A produced “some fruit”; in 1864 only nine; and in 1865 ninety-seven fruit. The female B in 1863 was “covered with fruit”; in 1864 it bore twenty-eight; and in 1865 “innumerable very fine fruits.” I may add that three other female trees growing close by were observed, but only during 1863, and they then bore abundantly. With respect to the polleniferous bushes, the one marked C did not bear a single fruit during the years 1863 and 1864, but during 1865 it produced no less than ninety-two fruit, which, however, were very poor. I selected one of the finest branches with fifteen fruit, and these contained twenty seeds, or on an average 1·33 per fruit. I then took by hazard fifteen fruit from an adjoining female bush, and these contained forty-three seeds; that is, more than twice as many, or on an average 2·86 per fruit. Many of the fruits from the female bushes included four seeds, and only one had a single seed; whereas, not one fruit from the polleniferous bushes contained four seeds. Moreover, when the two lots of seeds were compared, it was manifest that those from the female bushes were the larger. The second polleniferous bush, D, bore in 1863 about two dozen fruit, in 1864 only three very poor fruit, each containing a single seed; and in 1865, twenty equally poor fruit. Lastly, the three polleniferous bushes, E, F, and G, did not produce a single fruit during the three years 1863, 1864, and 1865.
A tendency to the separation of the sexes in the cultivated strawberry seems to be much more strongly marked in the United States than in Europe;17 and this appears to be the result of the direct action of climate on the reproductive organs. In the best account which I have seen, it is stated that many of the varieties in the United States consist of three forms, namely, females, which produce a heavy crop of fruit; of hermaphrodites, which “seldom produce other than a very scanty crop of inferior and imperfect berries”; and of males, which produce none. The most skillful cultivators plant “seven rows of female plants, then one row of hermaphrodites, and so on throughout the field.” The males bear large, the hermaphrodites mid-sized, and the females small flowers. The latter plants produce few runners, while the two other forms produce many; consequently, as has been observed both in England and in the United States, the polleniferous forms increase rapidly and tend to supplant the females. We may therefore infer that much more vital force is expended in the production of ovules and fruit than in the production of pollen.
CAUSES OF STERILITY AMONG PLANTS.
If the sexual elements belonging to the same form are united, the union is an illegitimate one, and more or less sterile. With dimorphic species two illegitimate unions, and with trimorphic species twelve are possible. There is reason to believe that the sterility of these unions has not been specially acquired, but follows as an incidental result from the sexual elements of the two or three forms having been adapted to act on one another in a particular manner, so that any other kind of union is inefficient, like that between distinct species. Another and still more remarkable incidental result is that the seedlings from an illegitimate union are often dwarfed and more or less completely18 barren, like hybrids from the union of two widely distinct species.
AN “IDEAL TYPE” OR INEVITABLE MODIFICATION?
It is interesting to look at one of the magnificent exotic species (orchids), or, indeed, at one of our humblest forms, and observe how profoundly it has been modified, as compared with all ordinary flowers—with its great labellum, formed of one petal and two petaloid stamens; with its singular pollen-masses, hereafter to be referred to; with its column formed of seven cohering organs, of which three alone perform their proper function, namely, one anther and two generally confluent stigmas; with the third stigma modified into the rostellum and incapable of being fertilized; and with three of the anthers no longer functionally active, but serving either to protect the pollen of the fertile anther or to strengthen the column, or existing as mere rudiments, or entirely suppressed. What an amount of modification, cohesion, abortion, and change of function do we here see! Yet hidden in that column, with its surrounding petals and sepals, we know that there are fifteen groups of vessels, arranged three within three, in alternate order, which probably have been preserved to the present time from being developed at a very early period of growth, before the shape or existence of any part of the flower is of importance for the well-being of the plant.
Can we feel satisfied by saying that each orchid was created, exactly as we now see it, on a certain “ideal type”; that the omnipotent Creator, having fixed on one plan for the whole order, did not depart from this plan; that he, therefore, made the same organ to perform diverse19 functions—often of trifling importance compared with their proper function—converted other organs into mere purposeless rudiments, and arranged all as if they had to stand separate, and then made them cohere? Is it not a more simple and intelligible view that all the Orchideæ owe what they have in common to descent from some monocotyledonous plant, which, like so many other plants of the same class, possessed fifteen organs, arranged alternately, three within three, in five whorls; and that the now wonderfully changed structure of the flower is due to a long course of slow modification—each modification having been preserved which was useful to the plant, during the incessant changes to which the organic and inorganic world has been exposed?
SPECIAL ADAPTATIONS TO A CHANGING PURPOSE.
It has, I think, been shown that the Orchideæ exhibit an almost endless diversity of beautiful adaptations. When this or that part has been spoken of as adapted for some special purpose, it must not be supposed that it was originally always formed for this sole purpose. The regular course of events seems to be, that a part which originally served for one purpose becomes adapted by slow changes for widely different purposes. To give an instance: in all the Ophreæ, the long and nearly rigid caudicle manifestly serves for the application of the pollen-grains to the stigma, when the pollinia are transported by insects to another flower; and the anther opens widely in order that the pollinium should be easily withdrawn; but, in the Bee ophrys, the caudicle, by a slight increase in length and decrease in its thickness, and by the anther opening a little more widely, becomes specially adapted for the very different purpose20 of self-fertilization, through the combined aid of the weight of the pollen-mass and the vibration of the flower when moved by the wind. Every gradation between these two states is possible—of which we have a partial instance in O. aranifera.
Again, the elasticity of the pedicel of the pollinium in some Vandeæ is adapted to free the pollen-masses from their anther-cases; but, by a further slight modification, the elasticity of the pedicel becomes specially adapted to shoot out the pollinium with considerable force, so as to strike the body of the visiting insect. The great cavity in the labellum of many Vandeæ is gnawed by insects, and thus attracts them; but in Mormodes ignea it is greatly reduced in size, and serves in chief part to keep the labellum in its new position on the summit of the column. From the analogy of many plants we may infer that a long, spur-like nectary is primarily adapted to secrete and hold a store of nectar; but in many orchids it has so far lost this function that it contains fluid only in the intercellular spaces. In those orchids in which the nectary contains both free nectar and fluid in the intercellular spaces, we can see how a transition from the one state to the other could be effected, namely, by less and less nectar being secreted from the inner membrane, with more and more retained within the intercellular spaces. Other analogous cases could be given.
Although an organ may not have been originally formed for some special purpose, if it now serves for this end, we are justified in saying that it is specially adapted for it. On the same principle, if a man were to make a machine for some special purpose, but were to use old wheels, springs, and pulleys, only slightly altered, the whole machine, with all its parts, might be said to be specially contrived for its present purpose. Thus throughout21 nature almost every part of each living being has probably served, in a slightly modified condition, for diverse purposes, and has acted in the living machinery of many ancient and distinct specific forms.
In my examination of orchids, hardly any fact has struck me so much as the endless diversities of structure—the prodigality of resources—for gaining the very same end, namely, the fertilization of one flower by pollen from another plant. This fact is to a large extent intelligible on the principle of natural selection. As all the parts of a flower are co-ordinated, if slight variations in any one part were preserved from being beneficial to the plant, then the other parts would generally have to be modified in some corresponding manner. But these latter parts might not vary at all, or they might not vary in a fitting manner, and these other variations, whatever their nature might be, which tended to bring all the parts into more harmonious action with one another, would be preserved by natural selection.
To give a simple illustration: in many orchids the ovarium (but sometimes the foot-stalk) becomes for a period twisted, causing the labellum to assume the position of a lower petal, so that insects can easily visit the flower; but from slow changes in the form or position of the petals, or from new sorts of insects visiting the flowers, it might be advantageous to the plant that the labellum should resume its normal position on the upper side of the flower, as is actually the case with Malaxis paludosa, and some species of Catasetum, etc. This change, it is obvious, might be simply effected by the continued selection of varieties which had their ovaria less and less twisted; but, if the22 plant only afforded varieties with the ovarium more twisted, the same end could be attained by the selection of such variations, until the flower was turned completely round on its axis. This seems to have actually occurred with Malaxis paludosa, for the labellum has acquired its present upward position by the ovarium being twisted twice as much as is usual.
Again, we have seen that in most Vandeæ there is a plain relation between the depth of the stigmatic chamber and the length of the pedicel, by which the pollen-masses are inserted; now, if the chamber became slightly less deep from any change in the form of the column, or other unknown cause, the mere shortening of the pedicel would be the simplest corresponding change; but, if the pedicel did not happen to vary in shortness, the slightest tendency to its becoming bowed from elasticity, as in Phalænopsis, or to a backward hygrometric movement, as in one of the Maxillarias, would be preserved, and the tendency would be continually augmented by selection; thus the pedicel, as far as its action is concerned, would be modified in the same manner as if it had been shortened. Such processes carried on during many thousand generations in various ways, would create an endless diversity of co-adapted structures in the several parts of the flower for the same general purpose. This view affords, I believe, the key which partly solves the problem of the vast diversity of structure adapted for closely analogous ends in many large groups of organic beings.
AS INTERESTING ON THE THEORY OF DEVELOPMENT AS ON THAT OF DIRECT INTERPOSITION.
The more I study nature, the more I become impressed, with ever-increasing force, that the contrivances and beautiful adaptations slowly23 acquired through each part occasionally varying in a slight degree but in many ways, with the preservation of those variations which were beneficial to the organism under complex and ever-varying conditions of life, transcend in an incomparable manner the contrivances and adaptations which the most fertile imagination of man could invent.
The use of each trifling detail of structure is far from a barren search to those who believe in natural selection. When a naturalist casually takes up the study of an organic being, and does not investigate its whole life (imperfect though that study will ever be), he naturally doubts whether each trifling point can be of any use, or, indeed, whether it be due to any general law. Some naturalists believe that numberless structures have been created for the sake of mere variety and beauty—much as a workman would make different patterns. I, for one, have often and often doubted whether this or that detail of structure in many of the Orchideæ and other plants could be of any service; yet, if of no good, these structures could not have been modeled by the natural preservation of useful variations; such details can only be vaguely accounted for by the direct action of the conditions of life, or the mysterious laws of correlated growth.
This treatise affords me also an opportunity of attempting to show that the study of organic beings may be as interesting to an observer who is fully convinced that the structure of each is due to secondary laws as to one who views every trifling detail of structure as the result of the direct interposition of the Creator.
24
THE SLEEP OF THE PLANTS.
The so-called sleep of leaves is so conspicuous a phenomenon that it was observed as early as the time of Pliny; and since Linnæus published his famous essay, “Somnus Plantarum,” it has been the subject of several memoirs. Many flowers close at night, and these are likewise said to sleep; but we are not here concerned with their movements, for although effected by the same mechanism as in the case of young leaves, namely, unequal growth on the opposite sides (as first proved by Pfeffer), yet they differ essentially in being excited chiefly by changes of temperature instead of light; and in being effected, as far as we can judge, for a different purpose. Hardly any one supposes that there is any real analogy between the sleep of animals and that of plants, whether of leaves or flowers. It seems, therefore, advisable to give a distinct name to the so-called sleep-movements of plants. These have also generally been confounded, under the term “periodic,” with the slight daily rise and fall of leaves, as described in the fourth chapter; and this makes it all the more desirable to give some distinct name to sleep-movements. Nyctitropism and nyctitropic, i. e., night-turning, may be applied both to leaves and flowers, and will be occasionally used by us; but it would be best to confine the term to leaves.
* * * * *
Leaves, when they go to sleep, move either upward or downward, or, in the case of the leaflets of compound leaves, forward, that is, toward the apex of the leaf, or backward, that is, toward its base; or, again, they may rotate on their own axis without moving either upward or downward. But in almost every case the plane of the blade is so placed as to stand nearly25 or quite vertically at night. Therefore the apex, or the base, or either lateral edge, may be directed toward the zenith. Moreover, the upper surface of each leaf, and more especially of each leaflet, is often brought into close contact with that of the opposite one; and this is sometimes effected by singularly complicated movements. This fact suggests that the upper surface requires more protection than the lower one. For instance, the terminal leaflet in trifolium, after turning up at night so as to stand vertically, often continues to bend over until the upper surface is directed downward, while the lower surface is fully exposed to the sky; and an arched roof is thus formed over the two lateral leaflets, which have their upper surfaces pressed closely together. Here we have the unusual case of one of the leaflets not standing vertically, or almost vertically, at night.
Considering that leaves in assuming their nyctitropic positions often move through an angle of 90°; that the movement is rapid in the evening; that in some cases it is extraordinarily complicated; that with certain seedlings, old enough to bear true leaves, the cotyledons move vertically upward at night, while at the same time the leaflets move vertically downward; and that in the same genus the leaves or cotyledons of some species move upward, while those of other species move downward—from these and other such facts, it is hardly possible to doubt that plants must derive some great advantage from such remarkable powers of movement.
The fact that the leaves of many plants place themselves at night in widely different positions from what they hold during the day, but with26 the one point in common, that their upper surfaces avoid facing the zenith, often with the additional fact that they come into close contact with opposite leaves or leaflets, clearly indicates, as it seems to us, that the object gained is the protection of the upper surfaces from being chilled at night by radiation. There is nothing improbable in the upper surface needing protection more than the lower, as the two differ in function and structure. All gardeners know that plants suffer from radiation. It is this, and not cold winds, which the peasants of Southern Europe fear for their olives. Seedlings are often protected from radiation by a very thin covering of straw; and fruit-trees on walls by a few fir-branches, or even by a fishing-net, suspended over them. There is a variety of the gooseberry, the flowers of which, from being produced before the leaves, are not protected by them from radiation, and consequently often fail to yield fruit. An excellent observer has remarked that one variety of the cherry has the petals of its flowers much curled backward, and after a severe frost all the stigmas were killed; while, at the same time, in another variety with incurved petals, the stigmas were not in the least injured.
* * * * *
We are far from doubting that an additional advantage may be thus gained; and we have observed with several plants, for instance, Desmodium gyrans, that while the blade of the leaf sinks vertically down at night, the petiole rises, so that the blade has to move through a greater angle in order to assume its vertical position than would otherwise have been necessary; but with the result that all the leaves on the same plant are crowded together, as if for mutual protection.
We doubted at first whether radiation would affect in27 any important manner objects so thin as are many cotyledons and leaves, and more especially affect differently their upper and lower surfaces; for, although the temperature of their upper surfaces would undoubtedly fall when freely exposed to a clear sky, yet we thought that they would so quickly acquire by conduction the temperature of the surrounding air, that it could hardly make any sensible difference to them whether they stood horizontally, and radiated into the open sky, or vertically, and radiated chiefly in a lateral direction toward neighboring plants and other objects. We endeavored, therefore, to ascertain something on this head, by preventing the leaves of several plants from going to sleep, and by exposing to a clear sky, when the temperature was beneath the freezing-point, these as well as the other leaves on the same plants, which had already assumed their nocturnal vertical position. Our experiments show that leaves thus compelled to remain horizontal at night suffered much more injury from frost than those which were allowed to assume their normal vertical position. It may, however, be said that conclusions drawn from such observations are not applicable to sleeping plants, the inhabitants of countries where frosts do not occur. But in every country, and at all seasons, leaves must be exposed to nocturnal chills through radiation, which might be in some degree injurious to them, and which they would escape by assuming a vertical position.
* * * * *
Any one who had never observed continuously a sleeping plant would naturally suppose that the leaves moved only in the evening when going to sleep, and in the morning when awaking; but he would be quite mistaken, for we have found no exception to the rule that leaves which sleep continue to28 move during the whole twenty-four hours; they move, however, more quickly when going to sleep and when awaking than at other times.
INFLUENCE OF LIGHT UPON PLANTS.
The extreme sensitiveness of certain seedlings to light is highly remarkable. The cotyledons of Phalaris became curved toward a distant lamp, which emitted so little light that a pencil held vertically close to the plants did not cast any shadow which the eye could perceive on a white card. These cotyledons, therefore, were affected by a difference in the amount of light on their two sides, which the eye could not distinguish. The degree of their curvature within a given time toward a lateral light did not correspond at all strictly with the amount of light which they received; the light not being at any time in excess. They continued for nearly half an hour to bend toward a lateral light, after it had been extinguished. They bend with remarkable precision toward it, and this depends on the illumination of one whole side, or on the obscuration of the whole opposite side. The difference in the amount of light which plants at any time receive in comparison with what they have shortly before received seems in all cases to be the chief exciting cause of those movements which are influenced by light. Thus seedlings brought out of darkness bend toward a dim lateral light, sooner than others which had previously been exposed to daylight. We have seen several analogous cases with the nyctitropic movements of leaves. A striking instance was observed in the case of the periodic movements of the cotyledons of a cassia: in the morning a pot was placed in an obscure part of a room, and all the cotyledons rose up closed; another pot had stood in the sunlight,29 and the cotyledons of course remained expanded; both pots were now placed close together in the middle of the room, and the cotyledons which had been exposed to the sun immediately began to close, while the others opened; so that the cotyledons in the two pots moved in exactly opposite directions while exposed to the same degree of light.
We found that if seedlings, kept in a dark place, were laterally illuminated by a small wax-taper for only two or three minutes at intervals of about three quarters of an hour, they all became bowed to the point where the taper had been held. We felt much surprised at this fact, and, until we had read Wiesner’s observations, we attributed it to the after-effects of the light; but he has shown that the same degree of curvature in a plant may be induced in the course of an hour by several interrupted illuminations lasting altogether for twenty minutes as by a continuous illumination of sixty minutes. We believe that this case, as well as our own, may be explained by the excitement from light being due not so much to its actual amount, as to the difference in amount from that previously received; and in our case there were repeated alternations from complete darkness to light. In this and in several of the above-specified respects, light seems to act on the tissues of plants almost in the same manner as it does on the nervous system of animals.
Gravitation excites plants to bend away from the center of the earth, or toward it, or to place themselves in a transverse position with respect to it. Although it is impossible to modify in any direct manner the attraction of gravity, yet its influence could be moderated indirectly, in the several ways described in30 the tenth chapter; and under such circumstances the same kind of evidence as that given in the chapter on heliotropism showed in the plainest manner that apogeotropic and geotropic, and probably diageotropic movements, are all modified forms of circumnutation.
Different parts of the same plant and different species are affected by gravitation in widely different degrees and manners. Some plants and organs exhibit hardly a trace of its action. Young seedlings, which, as we know, circumnutate rapidly, are eminently sensitive; and we have seen the hypocotyl of Beta bending upward through 109° in three hours and eight minutes. The after-effects of apogeotropism last for above half an hour; and horizontally-laid hypocotyls are sometimes thus carried temporarily beyond an upright position. The benefits derived from geotropism, apogeotropism, and diageotropism, are generally so manifest that they need not be specified. With the flower-peduncles of Oxalis, epinasty causes them to bend down, so that the ripening pods may be protected by the calyx from the rain. Afterward they are carried upward by apogeotropism in combination with hyponasty, and are thus enabled to scatter their seeds over a wider space. The capsules and flower-heads of some plants are bowed downward through geotropism, and they then bury themselves in the earth for the protection and slow maturation of the seeds. This burying process is much facilitated by the rocking movement due to circumnutation.
In the case of the radicles of several, probably of all seedling plants, sensitiveness to gravitation is confined to the tip, which transmits an influence to the adjoining upper part, causing it to bend toward the center of the earth. That there is transmission of this kind was proved in an interesting manner when horizontally extended31 radicles of the bean were exposed to the attraction of gravity for an hour or an hour and a half, and their tips were then amputated. Within this time no trace of curvature was exhibited, and the radicles were now placed pointing vertically downward; but an influence had already been transmitted from the tip to the adjoining part, for it soon became bent to one side, in the same manner as would have occurred had the radicle remained horizontal and been still acted on by geotropism. Radicles thus treated continued to grow out horizontally for two or three days, until a new tip was reformed; and this was then acted on by geotropism, and the radicle became curved perpendicularly downward.
THE POWER OF DIGESTION IN PLANTS.
As we have seen that nitrogenous fluids act very differently on the leaves of Drosera from non-nitrogenous fluids, and as the leaves remain clasped for a much longer time over various organic bodies than over inorganic bodies, such as bits of glass, cinder, wood, etc., it becomes an interesting inquiry whether they can only absorb matter already in solution, or render it soluble; that is, have the power of digestion. We shall immediately see that they certainly have this power, and that they act on albuminous compounds in exactly the same manner as does the gastric juice of mammals; the digested matter being afterward absorbed. This fact, which will be clearly proved, is a wonderful one in the physiology of plants.
* * * * *
It may be well to premise, for the sake of any reader who knows nothing about the digestion of albuminous compounds by animals, that this is effected by means of a ferment, pepsin, together with32 weak hydrochloric acid, though almost any acid will serve. Yet neither pepsin nor an acid by itself has any such power. We have seen that when the glands of the disk are excited by the contact of any object, especially of one containing nitrogenous matter, the outer tentacles and often the blade become inflected; the leaf being thus converted into a temporary cup or stomach. At the same time the discal glands secrete more copiously, and the secretion becomes acid. Moreover, they transmit some influence to the glands of the exterior tentacles, causing them to pour forth a more copious secretion, which also becomes acid or more acid than it was before.
As this result is an important one, I will give the evidence. The secretion of many glands on thirty leaves, which had not been in any way excited, was tested with litmus-paper; and the secretion of twenty-two of these leaves did not in the least affect the color, whereas that of eight caused an exceedingly feeble and sometimes doubtful tinge of red. Two other old leaves, however, which appeared to have been inflected several times, acted much more decidedly on the paper. Particles of clean glass were then placed on five of the leaves, cubes of albumen on six, and bits of raw meat on three, on none of which was the secretion at this time in the least acid. After an interval of twenty-four hours, when almost all the tentacles on these fourteen leaves had become more or less inflected, I again tested the secretion, selecting glands which had not as yet reached the center or touched any object, and it was now plainly acid. The degree of acidity of the secretion varied somewhat on the glands of the same leaf. On some leaves a few tentacles did not, from some unknown cause, become inflected, as often happens; and in five instances their secretion was found not to be in the least acid; while the secretion of33 the adjoining and inflected tentacles on the same leaf was decidedly acid. With leaves excited by particles of glass placed on the central glands, the secretion which collects on the disk beneath them was much more strongly acid than that poured forth from the exterior tentacles, which were as yet only moderately inflected. When bits of albumen (and this is naturally alkaline) or bits of meat were placed on the disk, the secretion collected beneath them was likewise strongly acid. As raw meat moistened with water is slightly acid, I compared its action on litmus-paper before it was placed on the leaves, and afterward when bathed in the secretion; and there could not be the least doubt that the latter was very much more acid. I have indeed tried hundreds of times the state of the secretion on the disks of leaves which were inflected over various objects, and never failed to find it acid. We may, therefore, conclude that the secretion from unexcited leaves, though extremely viscid, is not acid or only slightly so, but that it becomes acid, or much more strongly so, after the tentacles have begun to bend over any inorganic or organic object; and still more strongly acid after the tentacles have remained for some time closely clasped over any object.
I may here remind the reader that the secretion appears to be to a certain extent antiseptic, as it checks the appearance of mold and infusoria, thus preventing for a time the discoloration and decay of such substances as the white of an egg, cheese, etc. It therefore acts like the gastric juice of the higher animals, which is known to arrest putrefaction by destroying the microzymes.
* * * * *
Cubes of about one twentieth of an inch (1·27 millimetre) of moderately roasted meat were placed on five leaves, which became in twelve hours34 closely inflected. After forty-eight hours I gently opened one leaf, and the meat now consisted of a minute central sphere, partially digested, and surrounded by a thick envelope of transparent viscid fluid. The whole, without being much disturbed, was removed and placed under the microscope. In the central part the transverse striæ on the muscular fibers were quite distinct; and it was interesting to observe how gradually they disappeared, when the same fiber was traced into the surrounding fluid. They disappeared by the striæ being replaced by transverse lines formed of excessively minute dark points, which toward the exterior could be seen only under a very high power; and ultimately these points were lost.
* * * * *
Finally, the experiments recorded in this chapter show us that there is a remarkable accordance in the power of digestion between the gastric juice of animals, with its pepsin and hydrochloric acid, and the secretion of Drosera with its ferment and acid belonging to the acetic series. We can, therefore, hardly doubt that the ferment in both cases is closely similar.
DIVERSE MEANS BY WHICH PLANTS GAIN THEIR SUBSISTENCE.
Ordinary plants of the higher classes procure the requisite inorganic elements from the soil by means of their roots, and absorb carbonic acid from the atmosphere by means of their leaves and stems. But we have seen in a previous part of this work that there is a class of plants which digest and afterward absorb animal matter, namely, all the Droseraceæ, Pinguicula, and, as discovered by Dr. Hooker, Nepenthes, and to this class other species will almost certainly soon be35 added. These plants can dissolve matter out of certain vegetable substances, such as pollen, seeds, and bits of leaves. No doubt their glands likewise absorb the salts of ammonia brought to them by the rain. It has also been shown that some other plants can absorb ammonia by their glandular hairs; and these will profit by that brought to them by the rain. There is a second class of plants which, as we have just seen, can not digest, but absorb, the products of the decay of the animals which they capture, namely, Utricularia and its close allies; and, from the excellent observations of Dr. Mellichamp and Dr. Canby, there can scarcely be a doubt that Sarracenia and Darlingtonia may be added to this class, though the fact can hardly be considered as yet fully proved. There is a third class of plants which feed, as is now generally admitted, on the products of the decay of vegetable matter, such as the bird’s-nest orchid (Neottia), etc. Lastly, there is the well-known fourth class of parasites (such as the mistletoe), which are nourished by the juices of living plants. Most, however, of the plants belonging to these four classes obtain part of their carbon, like ordinary species, from the atmosphere. Such are the diversified means, as far as at present known, by which higher plants gain their subsistence.
HOW A PLANT PREYS UPON ANIMALS.
The genus described is Genlisea ornata.
The utricle is formed by a slight enlargement of the narrow blade of the leaf. A hollow neck, no less than fifteen times as long as the utricle itself, forms a passage from the transverse slit-like orifice into the cavity of the utricle. A utricle which measured 1/36 of an inch (·795 millimetre) in its longer36 diameter had a neck 15/36 (10·583 millimetres) in length, and 1/100 of an inch (·254 millimetre) in breadth. On each side of the orifice there is a long spiral arm, or tube; the structure of which will be best understood by the following illustration: Take a narrow ribbon and wind it spirally round a thin cylinder, so that the edges come into contact along its whole length; then pinch up the two edges so as to form a little crest, which will, of course, wind spirally round the cylinder, like a thread round a screw. If the cylinder is now removed, we shall have a tube like one of the spiral arms. The two projecting edges are not actually united, and a needle can be pushed in easily between them. They are indeed in many places a little separated, forming narrow entrances into the tube; but this may be the result of the drying of the specimens. The lamina of which the tube is formed seems to be a lateral prolongation of the lip of the orifice; and the spiral line between the two projecting edges is continuous with the corner of the orifice. If a fine bristle is pushed down one of the arms, it passes into the top of the hollow neck. Whether the arms are open or closed at their extremities could not be determined, as all the specimens were broken; nor does it appear that Dr. Warming ascertained this point.
So much for the external structure. Internally the lower part of the utricle is covered with spherical papillæ, formed of four cells (sometimes eight, according to Dr. Warming), which evidently answer to the quadrifid processes within the bladders of Utricularia. These papillæ extend a little way up the dorsal and ventral surfaces of the utricle; and a few, according to Warming may be found in the upper part. This upper region is covered by many transverse rows, one above the other, of short, closely approximate hairs, pointing downward.37 These hairs have broad bases, and their tips are formed by a separate cell. They are absent in the lower part of the utricle where the papillæ abound. The neck is likewise lined throughout its whole length with transverse rows of long, thin, transparent hairs, having broad bulbous bases, with similarly constructed sharp points. They arise from little projecting ridges, formed of rectangular epidermic cells. The hairs vary a little in length, but their points generally extend down to the row next below; so that, if the neck is split open and laid flat, the inner surface resembles a paper of pins—the hairs representing the pins, and the little transverse ridges representing the folds of paper through which the pins are thrust. These rows of hairs are indicated in the previous figure by numerous transverse lines crossing the neck. The inside of the neck is also studded with papillæ; those in the lower part are spherical and formed of four cells, as in the lower part of the utricle; those in the upper part are formed of two cells, which are much elongated downward beneath their points of attachment. These two-celled papillæ apparently correspond with the bifid process in the upper part of the bladders of Utricularia. The narrow transverse orifice is situated between the bases of the two spiral arms. No valve could be detected here, nor was any such structure seen by Dr. Warming. The lips of the orifice are armed with many short, thick, sharply pointed, somewhat incurved hairs or teeth.
The two projecting edges of the spirally-wound lamina, forming the arms, are provided with short incurved hairs or teeth, exactly like those on the lips. These project inward at right angles to the spiral line of junction between the two edges. The inner surface of the lamina supports two-celled, elongated papillæ, resembling those38 in the upper part of the neck, but differing slightly from them, according to Warming, in their footstalks being formed by prolongations of large epidermic cells; whereas the papillæ within the neck rest on small cells sunk amid the larger ones. These spiral arms form a conspicuous difference between the present genus and Utricularia.
Lastly, there is a bundle of spiral vessels which, running up the lower part of the linear leaf, divides close beneath the utricle. One branch extends up the dorsal and the other up the ventral side of both the utricle and neck. Of these two branches, one enters one spiral arm, and the other branch the other arm.
The utricles contained much débris, or dirty matter, which seemed organic, though no distinct organisms could be recognized. It is, indeed, scarcely possible that any object could enter the small orifice and pass down the long, narrow neck, except a living creature. Within the necks, however, of some specimens, a worm, with retracted horny jaws, the abdomen of some articulate animal, and specks of dirt, probably the remnants of other minute creatures, were found. Many of the papillæ within both the utricles and necks were discolored, as if they had absorbed matter.
From this description it is sufficiently obvious how genlisea secures its prey. Small animals entering the narrow orifice—but what induces them to enter is not known any more than in the case of Utricularia—would find their egress rendered difficult by the sharp incurved hairs on the lips, and, as soon as they passed some way down the neck, it would be scarcely possible for them to return, owing to the many transverse rows of long, straight, downward-pointing hairs, together with the ridges from which these project. Such creatures would, therefore,39 perish either within the neck or utricle; and the quadrifid and bifid papillæ would absorb matter from their decayed remains. The transverse rows of hairs are so numerous that they seem superfluous merely for the sake of preventing the escape of prey, and, as they are thin and delicate, they probably serve as additional absorbents, in the same manner as the flexible bristles on the infolded margins of the leaves of aldrovanda. The spiral arms, no doubt, act as accessory traps. Until fresh leaves are examined, it can not be told whether the line of junction of the spirally-wound lamina is a little open along its whole course or only in parts, but a small creature which forced its way into the tube at any point would be prevented from escaping by the incurved hairs, and would find an open path down the tube into the neck, and so into the utricle. If the creature perished within the spiral arms, its decaying remains would be absorbed and utilized by the bifid papillæ. We thus see that animals are captured by genlisea, not by means of an elastic valve, as with the foregoing species, but by a contrivance resembling an eel-trap, though more complex.
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.
This book is part of the public domain. Charles Darwin (2022). Darwinism Stated by Darwin himself. Urbana, Illinois: Project Gutenberg. Retrieved October 2022, from https://www.gutenberg.org/cache/epub/69147/pg69147-images.html
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.

Written by charlesdarwin | On the Origin of Species By Means of Natural Selection
Published by HackerNoon on 2023/01/15