Semantic Instance Extraction: CLIP and DINO Features for 3D Mapping

Written by instancing | Published 2025/12/10
Tech Story Tags: deep-learning | o3d-sim-methodology | vision-language-navigation | open-set-3d-mapping | semantic-instance-extraction | 3d-point-cloud-clustering | clip-embeddings | incremental-mapping

TLDRDetails the O3D-SIM pipeline for VLN. It extracts open-set semantic instance information (masks, CLIP/DINO features) from RGB-D imagesvia the TL;DR App

Abstract and 1 Introduction

  1. Related Works

    2.1. Vision-and-Language Navigation

    2.2. Semantic Scene Understanding and Instance Segmentation

    2.3. 3D Scene Reconstruction

  2. Methodology

    3.1. Data Collection

    3.2. Open-set Semantic Information from Images

    3.3. Creating the Open-set 3D Representation

    3.4. Language-Guided Navigation

  3. Experiments

    4.1. Quantitative Evaluation

    4.2. Qualitative Results

  4. Conclusion and Future Work, Disclosure statement, and References

3. Methodology

In this section, we discuss the pipeline of our Vision-Language Navigation (VLN) method, which employs O3D-SIM. We begin with an overview of our proposed pipeline and then present an in-depth analysis of its constituent steps. The initial phase of our methodology involves data collection, consisting of a set of RGB-D images and extrinsic and intrinsic camera parameters, which are outlined first. Subsequently, we move to creating the Open-set 3D Semantic Instance Map. This process is divided into two main stages: initially, we extract open-set semantic instance information from the images; following this, we utilize the gathered open-set information to organize the 3D point cloud into an open-set 3D semantic instance map. The final part of our discussion focuses on the VLN module, where we talk about its implementation and functionality.

The pipeline of the O3D-SIM creation is depicted in Fig.2. The first step of the creation of the O3D-SIM, presented in Section 3.2, is the extraction of the open-set semantic instance information from the RGB sequence of input images. This information includes, for each object instance, the mask information and the semantic features represented by the CLIP [9] and DINO [10] embedding features. The second step, presented in Section 3.3, uses this open-set semantic instance information to cluster the input 3D point cloud into an open-set semantic 3D objects map, see Figures 2 and 3. The operation is improved incrementally by applying the sequence of RGB-D images over time.

Authors:

(1) Laksh Nanwani, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work;

(2) Kumaraditya Gupta, International Institute of Information Technology, Hyderabad, India;

(3) Aditya Mathur, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work;

(4) Swayam Agrawal, International Institute of Information Technology, Hyderabad, India;

(5) A.H. Abdul Hafez, Hasan Kalyoncu University, Sahinbey, Gaziantep, Turkey;

(6) K. Madhava Krishna, International Institute of Information Technology, Hyderabad, India.


This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sharealike 4.0 International) license.


Written by instancing | Pioneering instance management, driving innovative solutions for efficient resource utilization, and enabling a more sus
Published by HackerNoon on 2025/12/10