Self-Supervised Machine Learning: The Story So Far and Trends For 2021

Written by bloodcarter | Published 2020/12/13
Tech Story Tags: machine-learning | artificial-intelligence | data-science | ai | supervised-learning | momentum-contrast-in-ml | self-supervised-ml-trends-2021 | hackernoon-top-story

TLDR Around 80% of modern word processing (NLP) consists of self-supervised learning. Self-Supervised machine learning is a way to teach a model a lot without manual markup, as well as an opportunity to avoid deep learning when setting a model up to solve a problem. In all experiments, almost simple models are trained on simple feature received on the downstream feature learned in self.Downstream task evaluates the quality of features learned by self. In this case, the task is a task (pseudo-labels), on which the model is trained to learn to form good representations of objects.via the TL;DR App

no story

Written by bloodcarter | Co-founder & CEO of Dasha.
Published by HackerNoon on 2020/12/13