
TLDR
To define the Refrangibility of the several sorts of homogeneal Light answering to the several Colours.
For determining this Problem I made the following Experiment.
Exper. 7. When I had caused the Rectilinear Sides AF, GM, [in Fig. 4.] of the Spectrum of Colours made by the Prism to be distinctly defined, as in the fifth Experiment of the first Part of this Book is described, there were found in it all the homogeneal Colours in the same Order and Situation one among another as in the Spectrum of simple Light, described in the fourth Proposition of that Part. For the Circles of which the Spectrum of compound Light PT is composed, and which in the middle Parts of the Spectrum interfere, and are intermix'd with one another, are not intermix'd in their outmost Parts where they touch those Rectilinear Sides AF and GM. And therefore, in those Rectilinear Sides when distinctly defined, there is no new Colour generated by Refraction. I observed also, that if any where between the two outmost Circles TMF and PGA a Right Line, as γδ, was cross to the Spectrum, so as both Ends to fall perpendicularly upon its Rectilinear Sides, there appeared one and the same Colour, and degree of Colour from one End of this Line to the other. I delineated therefore in a Paper the Perimeter of the Spectrum FAP GMT, and in trying the third Experiment of the first Part of this Book, I held the Paper so that the Spectrum might fall upon this delineated Figure, and agree with it exactly, whilst an Assistant, whose Eyes for distinguishing Colours were more critical than mine, did by Right Lines αβ, γδ, εζ, &c. drawn cross the Spectrum, note the Confines of the Colours, that is of the red MαβF, of the orange αγδβ, of the yellow γεζδ, of the green ηθζ, of the blue ηικθ, of the indico ιλμκ, and of the violet λGAμ. And this Operation being divers times repeated both in the same, and in several Papers, I found that the Observations agreed well enough with one another, and that the Rectilinear Sides MG and FA were by the said cross Lines divided after the manner of a Musical Chord. Let GM be produced to X, that MX may be equal to GM, and conceive GX, λX, ιX, ηX, εX, γX, αX, MX, to be in proportion to one another, as the Numbers, 1, 8/9, 5/6, 3/4, 2/3, 3/5, 9/16, 1/2, and so to represent the Chords of the Key, and of a Tone, a third Minor, a fourth, a fifth, a sixth Major, a seventh and an eighth above that Key: And the Intervals Mα, αγ, γε, εη, ηι, ιλ, and λG, will be the Spaces which the several Colours (red, orange, yellow, green, blue, indigo, violet) take up.via the TL;DR App
no story
Written by isaacnewton | When you hear "On the shoulders of giants," they're talking about me.