Authors:
(1) Wahei Hara;
(2) Yuki Hirano.
Table of Links
- Abstract and Intro
- Exchanges and Mutations of modifying modules
- Quasi-symmetric representation and GIT quotient
- Main results
- Applications to Calabi-Yau complete intersections
- Appendix A. Matrix factorizations
- Appendix B. List of Notation
- References
References
[BFK1] M. Ballard, D. Favero and L. Katzarkov, A category of kernels for equivariant factorizations and its implications for Hodge theory. Publ. Math. Inst. Hautes Etudes Sci. Β΄ 120, 1β111 (2014). 36, 38
[BFK2] M. Ballard, D. Favero and L. Katzarkov, Variation of geometric invariant theory quotients and derived categories, J. Reine Angew. Math. 746, 235β303 (2019). 32, 35
[BDFIK] M. Ballard, D. Deliu, D. Favero, M. U. Isik, and L. Katzarkov, Resolutions in factorization categories. Adv. Math. 295, 195β249 (2016). 34, 36
[BLS] D. Bergh, V. A. Lunts, O. M. SchnΒ¨urer1, Geometricity for derived categories of algebraic stacks, Selecta Math. (N.S.) 22 (2016), no. 4, 2535β2568. 9
[Bri] T. Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613β632. 1
[BH] W. Bruns and J. Herzog, Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics, 39. 7, 12
[Che] J.-C. Chen, Flops and equivalences of derived categories for threefolds with only terminal Gorenstein singularities, J. Differential Geom. 61 (2002), no. 2, 227β261. 1
[Har1] W. Hara, Non-commutative crepant resolution of minimal nilpotent orbit closures of type A and Mukai flops. Adv. Math.318(2017), 355β410. 2, 4, 31
[Har2] W. Hara, On derived equivalence for Abuaf flop: mutation of non-commutative crepant resolutions and spherical twists. Matematiche (Catania) 77(2022), no.2, 329β371. 2, 4, 10, 30, 31
[Hal] D. Halpern-Leistner, The derived category of a GIT quotient. J. Amer. Math. Soc. 28 (2015), no. 3, 871β912. 23
[HSa] D. Halpern-Leistner and S. V. Sam, Combinatorial constructions of derived equivalences. J. Amer. Math. Soc. 33, no. 3, 871β912 (2020). 1, 2, 3, 12, 13, 14, 16, 21, 31, 32, 33
[HSh] D. Halpern-Leistner and I. Shipman, Autoequivalences of derived categories via geometric invariant theory. Adv. Math. 303, 1264β1299 (2016). 34, 35
[HN] A. Higashitani and Y. Nakajima, Conic divisorial ideals of Hibi rings and their applications to non-commutative crepant resolutions. Selecta Math. (N.S.) 25(2019), no.5, Paper No. 78, 25 pp. 2, 4
[Hir1] Y. Hirano, Equivalences of derived factorization categories of gauged Landau-Ginzburg models. Adv. Math. 306, 200β278 (2017). 36
[Hir2] Y. Hirano, Derived KnΒ¨orrer periodicity and Orlovβs theorem for gauged Landau-Ginzburg models. Compos. Math. 153, no. 5, 973β1007 (2017). 32
[Hir3] Y. Hirano, Equivariant Tilting Modules, Pfaffian Varieties and Noncommutative Matrix Factorizations . SIGMA Symmetry Integrability Geom. Methods Appl. 17, Paper No. 055, 43 pp (2021). 5, 36, 37, 38
[HW1] Y. Hirano and M. Wemyss, Faithful actions from hyperplane arrangements, Geom. Topol. 22 (2018), no. 6, 3395β3433. 1
[HW2] Y. Hirano and M. Wemyss, Stability conditions for 3-fold flops, arXiv:1907.09742. 1, 3
[HR] J. Hall, D. Rydh, Perfect complexes on algebraic stacks, Compos. Math. 153 (2017), no. 11, 2318β2367. 9
[Isi] M. U. Isik, Equivalence of the derived category of a variety with a singularity category, Int. Math. Res. Not. IMRN (2013), no. 12, 2787β2808. 32
[IR] O. Iyama and I. Reiten, Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras. Am. J. Math. 130 (4), 1087β1149 (2008). 5
[IW1] O. Iyama and M. Wemyss, Maximal modifications and Auslander-Reiten duality for non-isolated singularities. Invent. Math. 197 (2014), no. 3, 521β586. 1, 2, 6, 7, 8, 11
[IW2] O. Iyama and M. Wemyss, Tits cones intersections and applications, preprint. 3
[Kaw] Y. Kawamata, Flops connect minimal models, Publ. RIMS, 44, 419β423 (2008). 1
[KO] N. Koseki and G. Ouchi, Perverse schobers and Orlov equivalences, Eur. J. Math. 9, no. 2, Paper No. 32, 38 pp (2023). 36
[Nak] Y. Nakajima, Mutations of splitting maximal modifying modules: the case of reflexive polygons. Int. Math. Res. Not. IMRN(2019), no.2, 470β550. 2
[OT] C. Okonek and A. Teleman, Graded tilting for gauged Landau-Ginzubrg models and geometric applications. arXiv:1907.10099. 5, 37
[Pos] L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. Mem. Amer. Math. Soc. 212 (2011), no. 966. 36
[Shi] I. Shipman, A geometric approach to Orlovβs theorem, Compos. Math. 148, no. 5, 1365-1389 (2012). 32
[SV1] S. Λ Spenko and M. Van den Bergh, Λ Non-commutative resolutions of quotient singularities for reductive groups. Invent. Math. 210, no. 1, 3β67 (2017). 1, 12, 21, 22, 25
[SV2] S. Λ Spenko and M. Van den Bergh, Λ Non-commutative crepant resolutions for some toric singularities I. Int. Math. Res. Not. IMRN(2020), no.21, 8120β8138. 10
[SV3] S. Λ Spenko and M. Van den Bergh, Λ Non-commutative crepant resolutions for some toric singularities. II. J. Noncommut. Geom. 14 (2020), no. 1, 73β103. 9
[SV4] S. Λ Spenko and M. Van den Bergh, Λ Tilting bundles on hypertoric varieties. Int. Math. Res. Not. IMRN(2021), no.2, 1034β1042. 31
[SV5] S. Λ Spenko and M. Van den Bergh, J.-P. Bell, Λ On the noncommutative Bondal-Orlov conjecture for some toric varieties. Math. Z. 300(2022), no.1, 1055β1068. 2
[Sta] The Stacks Project Authors, Stacks Project. https://stacks.math.columbia.edu 12
[Tel] C. Teleman, The quantization conjecture revisited. Ann. of Math. (2) 152 (2000), no. 1, 1β43. 23, 24
[Van1] M. Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423β455. 1
[Van2] M. Van den Bergh, Non-commutative crepant resolutions. The Legacy of Niels Henrik Abel, pp. 749β770. Springer, Berlin (2004) 1, 2
[Van3] M. Van den Bergh, Non-commutative crepant resolutions, an overview. arXiv:2207.09703. 1, 6, 26
[Wem] M. Wemyss, Flops and Clusters in the Homological Minimal Model Program, Invent. Math. 211 (2018), no. 2, 435β521. 1, 2, 30, 31
Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
Email address: wahei.hara@ipmu.jp
Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
Email address: hirano@go.tuat.ac.jp
This paper is available on arxiv under CC0 1.0 DEED license.