Authors:
(1) Michael Sorochan Armstrong, Computational Data Science (CoDaS) Lab in the Department of Signal Theory, Telematics, and Communications at the University of Granada;
(2) Jose Carlos P´erez-Gir´on, part of the Interuniversity Institute for Research on the Earth System in Andalucia through the University of Granada;
(3) Jos´e Camacho, Computational Data Science (CoDaS) Lab in the Department of Signal Theory, Telematics, and Communications at the University of Granada;
(4) Regino Zamora, part of the Interuniversity Institute for Research on the Earth System in Andalucia through the University of Granada.
Table of Links
Optimization of the Optical Interpolation
Appendix B: AAH ̸= MIN I in the Non-Equidistant Case
ACKNOWLEDGMENTS
The proof for the equidistant case was adapted from a proof by David J. Fleet and Allan D. Jepson from the University of Toronto [18].
REFERENCES
[1] C. Haley, âMissing-data nonparametric coherency estimation,â IEEE Signal Processing Letters, vol. 28, pp. 1704â1708, 2021.
[2] S. Dilmaghani, I. C. Henry, P. Soonthornnonda, E. R. Christensen, and R. C. Henry, âHarmonic analysis of environmental time series with missing data or irregular sample spacing,â Environmental science & technology, vol. 41, no. 20, pp. 7030â7038, 2007.
[3] J. W. Cooley and J. W. Tukey, âAn algorithm for the machine calculation of complex fourier series,â Mathematics of computation, vol. 19, no. 90, pp. 297â301, 1965.
[4] F. Rasheed, P. Peng, R. Alhajj, and J. Rokne, âFourier transform based spatial outlier mining,â in Intelligent Data Engineering and Automated Learning-IDEAL 2009: 10th International Conference, Burgos, Spain, September 23-26, 2009. Proceedings 10. Springer, 2009, pp. 317â324.
[5] C. Van Loan, Computational frameworks for the fast Fourier transform. SIAM, 1992.
[6] H. Carslaw, âA historical note on gibbsâ phenomenon in fourierâs series and integrals,â Bulletin of the American Mathematical Society, 1925.
[7] J. Markel, âFft pruning,â IEEE transactions on Audio and Electroacoustics, vol. 19, no. 4, pp. 305â311, 1971.
[8] J. C. Bowman and Z. Ghoggali, âThe partial fast fourier transform,â Journal of Scientific Computing, vol. 76, pp. 1578â1593, 2018.
[9] M. Kircheis and D. Potts, âDirect inversion of the nonequispaced fast fourier transform,â Linear Algebra and its Applications, vol. 575, pp. 106â140, 2019.
[10] S. Kunis and D. Potts, âStability results for scattered data interpolation by trigonometric polynomials,â SIAM Journal on Scientific Computing, vol. 29, no. 4, pp. 1403â1419, 2007.
[11] K. B. Petersen, M. S. Pedersen et al., âThe matrix cookbook,â Technical University of Denmark, vol. 7, no. 15, p. 510, 2008.
[12] C. M. Bishop, Neural networks for pattern recognition. Oxford university press, 1995.
[13] H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. Franc¸ois, G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Muller, J. Ooms, D. Robin- ¨ son, D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani, âWelcome to the tidyverse,â Journal of Open Source Software, vol. 4, no. 43, p. 1686, 2019.
[14] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2023. [Online]. Available: https://www.R-project.org/
[15] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del R´Ĺo, M. Wiebe, P. Peterson, P. Gerard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, ´ H. Abbasi, C. Gohlke, and T. E. Oliphant, âArray programming with NumPy,â Nature, vol. 585, no. 7825, pp. 357â362, Sep. 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2
[16] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, ËI. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, âSciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,â Nature Methods, vol. 17, pp. 261â 272, 2020.
[17] J. D. Hunter, âMatplotlib: A 2d graphics environment,â Computing in Science & Engineering, vol. 9, no. 3, pp. 90â95, 2007.
[18] âNotes on fourier analysis,â http://www.cs.toronto.edu/ âźjepson/csc320/notes/fourier.pdf, accessed: 2023-09-01.
This paper is available on arxiv under CC 4.0 license.