人工智能驱动的图像生成模型正在彻底改变创意领域。 Midjourney 平台凭借其文本驱动的图像创建一直是这一创新领域的关键参与者。然而,其基于 Discord 的界面对专业用途提出了一些限制。
让我们看一下名为 Kandinsky 2.2 的新 AI 模型,这是一个对构建者更加友好的文本到图像模型,可通过多功能 API 获得。
与通过 Discord 运营的 Midjourney 不同,Kandinsky 使开发人员能够将 AI 图像生成集成到各种编程语言中,例如 Python、Node.js 和 cURL。
这意味着只需几行代码,康定斯基就可以自动化图像生成过程,使其成为创意专业人士更有效的工具。随着新的 v2.2 版本的发布,康定斯基的图像质量达到了前所未有的高水平。
Kandinsky 2.2 为 AI 图像生成带来了新的可访问性和灵活性。它与多种编程语言和工具无缝集成,提供超越 Midjourney 平台的灵活性。
此外,康定斯基先进的扩散技术产生了令人印象深刻的逼真图像。其 API 优先的方法使专业人士更容易将人工智能驱动的可视化融入到他们现有的技术堆栈中。
在本指南中,我们将探讨康定斯基在可扩展性、自动化和集成方面的潜力,并讨论它如何为未来的创造力做出贡献。
加入我们,我们将深入研究使用这款高级人工智能助手将令人惊叹的人工智能艺术融入您的产品所需的工具和技术。
Kandinsky 2.2 是一种文本到图像的扩散模型,可根据文本提示生成图像。它由几个关键组件组成:
在训练期间,文本-图像对被编码为链接的嵌入。扩散 UNet 经过训练,可以通过去噪将这些嵌入反转回图像。
为了进行推理,文本被编码为嵌入,在图像嵌入之前通过扩散进行映射,由 MoVQ 压缩,并由 UNet 反转以迭代生成图像。附加的 ControlNet 允许控制深度等属性。
显示康定斯基从 v2.0 到 v2.1 再到 v2.2 演变的示例。现实主义!
Kandinsky 2.2 的主要增强功能包括:
新图像编码器 - CLIP-ViT-G :关键升级之一是 CLIP-ViT-G 图像编码器的集成。此次升级显着增强了模型生成美观图像的能力。通过利用更强大的图像编码器,Kandinsky 2.2 可以更好地解释文本描述并将其转换为视觉上迷人的图像。
ControlNet 支持:Kandinsky 2.2 引入了 ControlNet 机制,该功能允许精确控制图像生成过程。这一添加增强了生成输出的准确性和吸引力。借助 ControlNet,该模型获得了基于文本指导操作图像的能力,为创造性探索开辟了新途径。
准备好开始使用这个强大的人工智能模型进行创作了吗?以下是使用 Replicate API 与 Kandinsky 2.2 交互的分步指南。在较高层面上,您需要:
身份验证- 获取您的复制 API 密钥并在您的环境中进行身份验证。
发送提示- 在prompt
参数中传递您的文本描述。您可以用多种语言指定它。
自定义参数- 根据需要调整图像尺寸、输出数量等。请参阅
处理响应- Kandinsky 2.2 输出生成图像的 URL。下载此图像以在您的项目中使用。
为了方便起见,您可能还想尝试一下
在此示例中,我们将使用 Node 来处理模型。因此,您需要首先安装 Node.js 客户端。
npm install replicate
然后,复制您的 API 令牌并将其设置为环境变量:
export REPLICATE_API_TOKEN=r8_*************************************
接下来,使用 Node.js 脚本运行模型:
import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, }); const output = await replicate.run( "ai-forever/kandinsky-2.2:ea1addaab376f4dc227f5368bbd8eff901820fd1cc14ed8cad63b29249e9d463", { input: { prompt: "A moss covered astronaut with a black background" } } );
您还可以为预测设置一个 Webhook,以便在该过程完成时接收更新。
const prediction = await replicate.predictions.create({ version: "ea1addaab376f4dc227f5368bbd8eff901820fd1cc14ed8cad63b29249e9d463", input: { prompt: "A moss covered astronaut with a black background" }, webhook: "https://example.com/your-webhook", webhook_events_filter: ["completed"] });
当您将此代码应用到您的应用程序中时,您将需要试验模型的参数。让我们看一下康定斯基的输入和输出。
文字提示是指导康定斯基图像生成的核心输入。通过调整提示,您可以调整输出。
将创意提示与这些调整参数相结合,您可以调出完美的图像。
康定斯基根据您的输入输出一个或多个图像 URL。 URL 指向后端托管的 1024x1024 JPG 图像。您可以下载这些图像以在您的创意项目中使用。输出的数量取决于“num_outputs”参数。
输出格式如下所示:
{ "type": "array", "items": { "type": "string", "format": "uri" }, "title": "Output" }
通过生成变化,您可以选择最佳结果或找到鼓舞人心的方向。
将文本转换为图像的能力是一项了不起的创新,Kandinsky 2.2 处于这项技术的最前沿。让我们探讨一下使用该模型的一些实际方法。
例如,在设计中,将文本想法快速转换为视觉概念可以显着简化创作过程。
设计师可以使用康定斯基立即可视化他们的想法,而不是依赖冗长的讨论和手工草图,从而加快客户的批准和修改。
在教育领域,将复杂的文本描述转化为视觉图表可以使学习变得更加有吸引力和易于理解。教师可以即时说明具有挑战性的概念,增强学生对生物或物理等学科的理解和兴趣。
电影和网页设计领域也可以从康定斯基 2.2 中受益。通过将书面脚本和概念转化为视觉效果,导演和设计师可以实时预览他们的作品。
这种即时可视化可以简化规划阶段并促进团队成员之间的协作。
此外,康定斯基制作高质量图像的能力可能为新的艺术表达形式和专业应用打开大门。从数字艺术画廊到印刷媒体,潜在用途广泛且令人兴奋。
但我们不要忽视实际的局限性。虽然这个概念很有希望,但现实世界的集成将面临挑战,并且生成的图像的质量可能会有所不同或需要人工监督。
与任何新兴技术一样,Kandinsky 2.2 可能需要改进和调整才能满足您的需求。
AIModels.fyi 是发现针对特定创意需求量身定制的 AI 模型的宝贵资源。您可以探索各种类型的型号,进行比较,甚至按价格排序。这是一个免费平台,提供摘要电子邮件,让您随时了解新型号。
要查找与 Kandinsky-2.2 类似的模型:
访问
使用搜索栏输入您的用例的描述。例如, ”
查看每个型号的型号卡并选择最适合您的用例的型号卡。
查看每个型号的型号详细信息页面并进行比较以找到您最喜欢的。
在本指南中,我们探索了 Kandinsky-2.2(一种多语言文本到图像潜在扩散模型)的创新功能。
从了解其技术实现到通过分步说明来利用它,您现在已经准备好在您的创造性工作中利用人工智能的力量。
此外,AIModels.fyi 通过帮助您发现和比较相似的模型,打开了通往充满可能性的世界的大门。拥抱 AI 驱动的内容创建的潜力,并在 AIModels.fyi 上订阅更多教程、更新和灵感。快乐探索和创造!
对于那些对人工智能模型的功能及其多样化应用感兴趣的人,这里有一些相关文章,深入探讨了人工智能驱动的内容生成和操作的各个方面:
也发布在这里