क्या आप चैटजीपीटी की क्षमताओं के बारे में उत्साहित हैं, या क्या आपने अभी-अभी अपना एमएल पाठ्यक्रम पूरा किया है और एक बेहतरीन सुविधा बनाने के लिए इन तकनीकों का उपयोग करने के लिए तैयार हैं?
दोनों ही मामलों में, आपको पता होना चाहिए कि अपना पहला एआई-संचालित फीचर बनाते समय कौन सी चुनौतियाँ आपका इंतजार कर रही हैं। काश मुझे यह सब एक साल पहले पता होता।
गूगल का
किसी समस्या को हल करने के लिए AI जोड़ने से अतिरिक्त चुनौतियाँ आती हैं जिनका आपको सामना करना पड़ता है, जैसे:
परियोजना किस बारे में है? इससे ग्राहक की कौन सी समस्या हल होगी? हम किन मेट्रिक्स में सुधार की उम्मीद करते हैं? ज्ञात सिस्टम सीमाएँ क्या हैं?
लागू करने से पहले इन सभी सवालों का जवाब होना जरूरी है. योजना बनाते समय आप जितनी अधिक संभावित कमियों की पहचान करेंगे, उतना ही बेहतर होगा
आपको हर चीज़ का दस्तावेजीकरण करना चाहिए- समस्या विवरण, मेट्रिक्स, वांछित परिणाम, परीक्षण मामले, शोध लॉग, डिज़ाइन दस्तावेज़, मील के पत्थर।
दस्तावेज़ लिखने से आप कम चीज़ें ध्यान में रख पाते हैं। अन्य लोग आपके प्रोजेक्ट में शीघ्रता से शामिल हो सकते हैं या आपके काम के परिणामों का उपयोग अन्य परियोजनाओं में कर सकते हैं।
सुविधा के पहले संस्करण को सरल रखकर, आप इसे जल्दी से बना सकते हैं, प्रभाव को माप सकते हैं, अंतर्दृष्टि सीख सकते हैं और पुनरावृत्ति जारी रख सकते हैं। एक छोटी सी चीज़ का निर्माण आपको एक आधारभूत प्रदर्शन स्थापित करने की भी अनुमति देता है जिसे आप आगे की पुनरावृत्तियों में सुधारेंगे।
एक ऐसी प्रणाली बनाना जो कई काम करे और सभी संभावित उपयोग के मामलों को संभाल सके, एक रोमांचक चुनौती है। तथापि,
यदि समस्या क्षेत्र के लिए नई है और अभी तक किसी ने इसका समाधान नहीं किया है, तो इस पर शोध करने पर विचार करें। आप परीक्षण करना चाहते हैं कि क्या समस्या का समाधान संभव है।
शोध परिणाम एक न्यूनतम कार्यशील प्रोटोटाइप है जो दर्शाता है कि एक एल्गोरिदम समस्या को हल कर सकता है । अनुसंधान यह भी दिखा सकता है कि कोई व्यवहार्य समाधान नहीं है, जो उत्कृष्ट सीख है - इसीलिए आप परियोजना की शुरुआत में यह कदम उठाते हैं।
आपकी अवधारणा का प्रमाण शानदार लग सकता है और प्रचार पैदा कर सकता है, लेकिन प्रोटोटाइप और उत्पादन-ग्रेड समाधान के बीच बहुत काम होता है जो सभी उपयोगकर्ताओं के लिए काम करता है।
नई तकनीक के साथ काम करते समय, सबसे अच्छी बात जो आप कर सकते हैं वह यह है कि काम को जल्दी पूरा करने का वादा करने से बचें । अपना समय लें, तकनीक और समस्या क्षेत्र से परिचित हों, काम को कई छोटे-छोटे लक्ष्यों में विभाजित करें और उनका अलग-अलग अनुमान लगाएं।
जब आप देखते हैं कि कुछ योजना के अनुसार नहीं चल रहा है, तो टीम के साथ संवाद करें और सुनिश्चित करें कि हर कोई समझता है कि समयरेखा/परियोजना बदल गई है।
एआई के साथ विकास करते समय आपको समान सॉफ्टवेयर इंजीनियरिंग सिद्धांत लागू करने होंगे। आपका समाधान विकसित होगा, और आपको यह सुनिश्चित करना होगा कि यह अपेक्षा के अनुरूप काम करे।
महीनों की कड़ी मेहनत के बाद भी, आपका मॉडल खराब प्रदर्शन कर सकता है। यह निराशाजनक हो सकता है, लेकिन यह एमएल विकास प्रक्रिया का एक हिस्सा है। आपको यह स्वीकार करना चाहिए कि विफलता संभव है और यदि आवश्यक हो तो अपने दृष्टिकोण को बदलने के लिए तैयार रहें।
याद रखने वाली महत्वपूर्ण बात यह है कि प्रत्येक विफलता भविष्य के लिए सीखने और सुधार करने का एक अवसर है।
एआई-संचालित सुविधा के निर्माण के लिए सावधानीपूर्वक योजना, अनुसंधान और कार्यान्वयन की आवश्यकता होती है। छोटी शुरुआत करना, हर चीज़ का दस्तावेजीकरण करना और टीम के साथ नियमित रूप से संवाद करना महत्वपूर्ण है। और किसी भी चीज़ को लागू करने से पहले यह आकलन करना हमेशा याद रखें कि एआई आवश्यक है या नहीं।
याद रखें कि असफलता संभव है, लेकिन यह सीखने और सुधार करने का अवसर है। केवल वही लोग कभी असफल नहीं होते, जो कभी प्रयास नहीं करते।
यहाँ भी दिखाई देता है.