paint-brush
Is the Universe Finite? by@bertrandrussell
108 reads

Is the Universe Finite?

by Bertrand Russell June 8th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

One of the most fascinating of the speculations to which I have been alluding is the suggestion that the universe may be of finite extent. Two somewhat different finite universes have been constructed, one by Einstein, the other by De Sitter. Before considering their differences, we will discuss what they have in common.
featured image - Is the Universe Finite?
Bertrand Russell  HackerNoon profile picture

The A B C of Relativity by Bertrand Russells, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. XI. IS THE UNIVERSE FINITE?

XI. IS THE UNIVERSE FINITE?

We have been dealing hitherto with matters that must be regarded as acquired scientific results—not that they will never be found to need improvement, but that further progress must be built upon them, as Einstein is built upon Newton. Science does not aim at establishing immutable truths and eternal dogmas: its aim is to approach truth by successive approximations, without claiming that at any stage final and complete accuracy has been achieved. There is a difference, however, between results which are pretty certainly in the line of advance, and speculations which may or may not prove to be well founded. Some very interesting speculations are connected with the theory of relativity, and we shall consider certain of them. But it must not be supposed that we are dealing with theories having the same solidity as those with which we have been concerned hitherto.

One of the most fascinating of the speculations to which I have been [Pg 164]alluding is the suggestion that the universe may be of finite extent. Two somewhat different finite universes have been constructed, one by Einstein, the other by De Sitter. Before considering their differences, we will discuss what they have in common.

There are, to begin with, certain reasons for thinking that the total amount of matter in the universe is limited. If this were not the case, the gravitational effects of enormously distant matter would make the kind of world in which we live impossible. We must therefore suppose that there is some definite number of electrons and protons in the world: theoretically, a complete census would be possible. These are all contained within a certain finite region; whatever space lies outside that region is, so to speak, waste, like unfurnished rooms in a house too large for its inhabitants. This seems futile, but in former days no one knew of any alternative possibility. It was obviously impossible to conceive of an edge to space, and therefore, it was thought, space must be infinite.

Non-Euclidean geometry, however, showed other possibilities. The surface of a sphere has no boundary, yet it is not infinite. In [Pg 165]traveling round the earth, we never reach “the edge of the world,” and yet the earth is not infinite. The surface of the earth is contained in three-dimensional space, but there is no reason in logic why three-dimensional space should not be constructed on an analogous plan. What we imagine to be straight lines going on for ever will then be like great circles on a sphere: they will ultimately return to their starting point. There will not be in the universe anything straighter than these great circles; the Euclidean straight line may remain as a beautiful dream, but not as a possibility in the actual world. In particular, light rays in empty space will travel in what are really great circles. If we could make measurements with sufficient accuracy, we should be able to infer this state of affairs even from a small part of space, because the sum of the angles of a triangle would always be greater than two right angles, and the excess would be proportional to the size of the triangle. The suggestion we have to consider is the suggestion that our universe may be spherical in this sense.

The reader must not confuse this suggestion with the non-Euclidean character of space upon which the new law of gravitation depends. The [Pg 166]latter is concerned with small regions such as the solar system. The departures from flatness which it notices are like hills and valleys on the surface of the earth, local irregularities, not characteristics of the whole. We are now concerned with the possible curvature of the universe as a whole, not with the occasional ups and downs due to the sun and the stars. It is suggested that on the average, and in regions remote from matter, the universe is not quite flat, but has a slight curvature, analogous, in three dimensions, to the curvature of a sphere in two dimensions.

It is important to realize, in the first place, that there is not the slightest reason à priori why this should not be the case. People unaccustomed to non-Euclidean geometry may feel that, even if such a thing be logically possible, the world simply cannot be so odd as all that. We all have a tendency to think that the world must conform to our prejudices. The opposite view involves some effort of thought, and most people would die sooner than think—in fact, they do so. But the fact that a spherical universe seems odd to people who have been brought up on Euclidean prejudices is no evidence that it is impossible. There is no law of nature to the [Pg 167]effect that what is taught at school must be true. We cannot therefore dismiss the hypothesis of a spherical universe as in any degree less worthy of examination than any other. We have to ask ourselves the same two questions as we should in any other case, namely: (1) Are the facts consistent with this hypothesis? (2) Is this hypothesis the only one with which the facts are consistent?

With regard to the first question, the answer is undoubtedly in the affirmative. All the known facts are perfectly consistent with the hypothesis of a spherical universe. A very slight modification of the law of gravitation—a modification suggested by Einstein himself—leads to a spherical space, without producing any measurable differences in a small region such as the solar system. The known stars are all within a certain distance from us. There is nothing whatever in the stellar universe as we know it to show that space must be infinite. There can therefore be no doubt whatever that, so far as our present knowledge goes, the hypothesis of a finite universe may be true.

But when we ask whether the hypothesis of a finite universe [Pg 168]must be true, the answer is different. It is obvious, on general grounds, that we cannot, from what we know, draw conclusive inferences as to the totality of things. A very slight change in the Newtonian formula for gravitation would prevent masses beyond the limits of the visible universe from having appreciable effects if they existed, and would therefore destroy our reason for supposing that they do not exist. All arguments as to regions which are too distant to be observed depend upon extending to them the laws which hold in our part of the world, and upon assuming that there is not, in these laws, some inaccuracy which is inappreciable for observable distances, but fatal to inferences in which very much greater distances are involved. We cannot, therefore, say that the universe must be finite. We can say that it may be, and we can even say a little more than this. We can say that a finite universe fits in better with the laws that hold in the part we know, and that awkward adjustments of the laws have to be made in order to allow the universe to be infinite. From the point of view of choosing the best framework into which to fit what we know—best, I mean, from a logico-æsthetic point of view—there is no [Pg 169]doubt that the hypothesis of a finite universe is preferable. This, I think, is the extent of what can be said in its favor.

Let us now see what the two finite universes are like. The difference between them is that in Einstein’s world it is only space that is queer, whereas in De Sitter’s time is queer too. Consequently Einstein’s world is less puzzling, and we will describe it first.

In Einstein’s world, light travels round the whole universe in a time which is supposed to be something like a thousand million years. The odd thing is that all the rays of light which start (say) from the sun will meet again, after their enormous journey, in the place where the sun was when they started. The case is exactly analogous to that of a number of travelers who set out from London to go round the world in great circles, all traveling at the same rate in different aeroplanes. One starts due north, passes the North Pole, then the South Pole, and finally comes home. Another starts due south, reaches the South Pole first and then the North Pole. Another starts westward, but he must not continue to travel due west, because then he would not be traveling on [Pg 170]a great circle. Another starts eastward, and so on. They all meet in the antipodes of London, and then they all meet again in London. Now if instead of aeronauts going round the earth you take rays of light going round the universe, the same sort of thing happens: they all meet first at the antipodes of their starting point, and then meet again at their starting point. That means to say that a person who is near the antipodes of the place where the sun was about five hundred million years ago will see what is apparently a body as bright as the sun then was (except for the small amount of light that has been stopped on the way by opaque bodies), and having the same shape and size. And a person who is near where the sun was a thousand million years ago will see what is apparently a body just like what the sun was a thousand million years ago. And the same applies to the antipodes of the sun fifteen hundred million years ago, and to the place of the sun two thousand million years ago, and so on. This series only ends when it carries us back to a time before the sun existed.

But all these suns are only ghosts; that is to say, you could pass through them without experiencing resistance, and they do not exert [Pg 171]gravitation. They are, in fact, like images in a mirror: they exist only for the sense of sight, not for any other sense. It is rather disturbing to reflect that, if this theory is true, any number of the objects we see in the heavens may be merely ghosts. They are like ghosts in their habit of revisiting the scenes of their past life. Suppose a star had exploded at a certain place, as stars sometimes will. Every thousand million years its ghost would return to the scene of the disaster and explode again in the same place. There is, however, considerable doubt whether rays of light could perform the journey with sufficient accuracy to produce a clear image. Some would be stopped by matter on the way, some would be turned out of the straight course by passing near heavy bodies, as in the eclipse observations described in Chapter IX, and for one reason or another their return would not be punctual and exact.

There are various reasons for doubting whether Einstein’s universe can be quite right.[12] Some of these are rather complicated. But there is one objection which is easily appreciated: in Einstein’s theory, [Pg 172]absolute space and time re-enter by another door. The ghostly sun is formed in the “place” where it was a thousand million years ago. Both the “place” and the period of time are in a sense absolute. We saw as early as Chapter I that “place” is a vague and popular notion, incapable of scientific precision. It seems hardly worth while to go through such a vast intellectual labor if the errors we set out to correct are to reappear at the end.

De Sitter’s world is even odder than Einstein’s, because time goes mad as well as space. I despair of explaining, in non-mathematical language, the particular form of lunacy with which time is afflicted, but some of its manifestations can be described. An observer in this world, if he observes a number of clocks, each of which is perfectly accurate from its own point of view, will think that distant clocks are going slow as compared with those in his neighborhood. They will seem to go slower and slower, until, at a distance of one quarter of the circumference of the universe, they will seem to have stopped altogether. That region will seem to our observer a sort of lotus [Pg 173]land, where nothing is ever done. He will not be able to have any cognizance of things farther off, because no light waves can get across the boundary. Not that there is any real boundary: the people who live in what our observer takes to be lotus land live just as bustling a life as he does, but get the impression that he is eternally standing still. As a matter of fact, you would never become aware of the lotus land, because it would take an infinite time for light to travel from it to you. You could become aware of places just short of it, but it would remain itself always just beyond your ken. There will not be the ghostly suns of Einstein’s world, because light cannot travel so far.

One of the oddest things about this state of affairs is that empirical evidence for or against it is possible, and that there is actually some slight evidence in its favor. If all “clocks” are slowed down at a great distance from the observer, this will apply to the periodic motions of atoms, and therefore to the light which they emit. Consequently all rays of light emitted by distant objects ought, when they reach us, to look rather more red or less violet than when they started. This can be tested by the spectroscope. We can compare a [Pg 174]known line, as it appears in the spectrum of a spiral nebula, with the same line as it appears in a terrestrial laboratory. We find, as a matter of fact, that in a large majority of spiral nebulæ there is a considerable displacement of spectral lines towards the red. The spiral nebulæ are the most distant objects we can see: Eddington states that their distances “may perhaps be of the order of a million light-years.” (A light-year is the distance light travels in a year.) The usual interpretation of a shifting of spectral lines towards the red is that it is a “Doppler effect,” due to the fact that the source of light is moving away from us. But one would expect to find the nebulæ just as often moving towards us as moving away from us, if nothing operated but the law of chances. If the world is such as De Sitter says it is, the spectral lines of the spiral nebulæ will be displaced towards the red owing to the slowing down of distant clocks, even if in fact they are not moving away from us. This, for what it is worth, is an argument in favor of De Sitter.

The same facts afford another argument in favor of De Sitter, for another reason. If, at a given moment, a body is at rest relatively to [Pg 175]the observer, and at a distance from him, it will (in the absence of counteracting causes) not remain at rest from his point of view, but will begin to move away from him, and will continue to move away faster and faster; the further it is from him, the more its retreat will be accelerated. For bodies which are not too distant from each other, gravitation may overcome this tendency; but as this tendency increases with the distance, while gravitation diminishes, we should expect to find very distant bodies receding from us if De Sitter’s theory is right. Thus we have two reasons for the displacement of spectral lines in spiral nebulæ: one, the slowing down of time; the other, the movement away from us which we should expect at distances too great for gravitation to be sensible. However, it cannot be said that the argument, on either ground, is very strong. Eddington gives a list of forty-one spiral nebulæ, of which five have their spectral lines shifted towards the violet, not towards the red. Thus the material is neither very copious nor quite harmonious.

Einstein’s and De Sitter’s hypotheses do not exhaust the possibilities of a finite world: they are merely the two simplest forms of such a [Pg 176]world. There are arguments against each, and it hardly seems probable that either is quite true. But it does seem probable that something more or less analogous is true. If the universe is finite, it is theoretically conceivable that there should be a complete inventory of it. We may be coming to the end of what physics can do in the way of stretching the imagination and systematizing the world. The period since Galileo has been essentially the period of physics, as the age of the Greeks was the period of geometry. It may be that physics will lose its attractions through success: if the fundamental laws of physics come to be fully known, adventurous and inquiring intellects will turn to other fields. This may alter profoundly the whole texture of human life, since our present absorption in machinery and industrialism is the reflection in the practical world of the theorist’s interest in physical laws. But such speculations are even more rash than those of De Sitter, and I do not wish to lay any stress upon them.

About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.

This book is part of the public domain. Bertrand Williams (2004). THE A B C OF RELATIVITY. Urbana, Illinois: Project Gutenberg. Retrieved October 2022, from https://www.gutenberg.org/files/67104/67104-h/67104-h.htm

This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.