paint-brush
INCREASING THE ILLUMINATING POWER OF GASES, ETCby@scientificamerican

INCREASING THE ILLUMINATING POWER OF GASES, ETC

by Scientific American November 9th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

This invention relates to lighting by mixing air or other gaseous supporter of combustion with illuminating or other hydrocarbon gas or vapor, and burning the mixture (at a suitable pressure) in a burner of special construction, shown in the accompanying illustrations. The burner is constructed as shown in Figs 1 and 2. It consists of a central tube, i, screwing upon the pipe by which the gaseous mixture is supplied. Upon this tube is screwed a cup, k, of metal or refractory material which supports a cap, l, of fire-clay in the shape of a thimble (or of other form, according to the intended use of the burner). The flanged base of this cap is perforated with a ring of holes, m, as small and numerous as possible, and the sides of the cap are pierced with oblique perforations, n. The top of the tube, i, is provided with four small projections, upon which rests a copper cone, o, soldered to the tube at a point below the perforations in the base of the thimble. The cone is perforated at its lower end with small holes, p, the sum of whose areas is at least equal to the area of the tube. The thimble, l, is surrounded by an envelope, q, of platinum wire netting or other refractory material of the same form. The gaseous mixture arriving by the pipe, i, escapes at the upper orifices, r, and passes down against the interior surface of the cone, o, out at the orifices, p, and escapes through the orifices in the cap, l, at which it is burned. The cap is thereby raised to a high temperature; and the platinum wire sheath becoming incandescent radiates the light. The gaseous mixture, by coming first in contact with the copper cone and then with the refractory cap, becomes raised to an exceedingly high temperature before it is consumed. In the modified burner represented in Fig. 3, the metal cone and the fire-cap are truncated. The tube, i, is provided with a number of small perforations, r, at its upper end, the sum of whose areas is at least equal to the area of the tube, and by which the gaseous mixture is distributed within the chamber, k. Upon the upper closed end of the tube is fixed a cup or inverted thimble, o, of fire-clay. A refractory cone, l, surrounds this cup and rests by its base upon the cup. This flanged base is perforated with small vertical holes, m, and upon it is fixed a platinum wire cage or envelope, q. An annular space is left between the cone and cup for the passage of the gaseous mixture, which, on escaping from the orifices, r, passes over the exterior surface of o, the interior of which is already heated by the flame which has not passed through the wire gauze, and has been forced by the pressure of the mixture into the interior of o. The gaseous mixture before passing through the annular space thus attains such a temperature that on escaping from the orifice its combustion is greatly promoted.
featured image - INCREASING THE ILLUMINATING POWER OF GASES, ETC
Scientific American  HackerNoon profile picture

Scientific American Supplement, No. 392, July 7, 1883 by Various, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. INCREASING THE ILLUMINATING POWER OF GASES, ETC.

INCREASING THE ILLUMINATING POWER OF GASES, ETC.

By V. POPP, of Paris.

This invention relates to lighting by mixing air or other gaseous supporter of combustion with illuminating or other hydrocarbon gas or vapor, and burning the mixture (at a suitable pressure) in a burner of special construction, shown in the accompanying illustrations.



The burner is constructed as shown in Figs 1 and 2. It consists of a central tube, i, screwing upon the pipe by which the gaseous mixture is supplied. Upon this tube is screwed a cup, k, of metal or refractory material which supports a cap, l, of fire-clay in the shape of a thimble (or of other form, according to the intended use of the burner). The flanged base of this cap is perforated with a ring of holes, m, as small and numerous as possible, and the sides of the cap are pierced with oblique perforations, n. The top of the tube, i, is provided with four small projections, upon which rests a copper cone, o, soldered to the tube at a point below the perforations in the base of the thimble. The cone is perforated at its lower end with small holes, p, the sum of whose areas is at least equal to the area of the tube. The thimble, l, is surrounded by an envelope, q, of platinum wire netting or other refractory material of the same form. The gaseous mixture arriving by the pipe, i, escapes at the upper orifices, r, and passes down against the interior surface of the cone, o, out at the orifices, p, and escapes through the orifices in the cap, l, at which it is burned. The cap is thereby raised to a high temperature; and the platinum wire sheath becoming incandescent radiates the light. The gaseous mixture, by coming first in contact with the copper cone and then with the refractory cap, becomes raised to an exceedingly high temperature before it is consumed.


In the modified burner represented in Fig. 3, the metal cone and the fire-cap are truncated. The tube, i, is provided with a number of small perforations, r, at its upper end, the sum of whose areas is at least equal to the area of the tube, and by which the gaseous mixture is distributed within the chamber, k. Upon the upper closed end of the tube is fixed a cup or inverted thimble, o, of fire-clay. A refractory cone, l, surrounds this cup and rests by its base upon the cup. This flanged base is perforated with small vertical holes, m, and upon it is fixed a platinum wire cage or envelope, q. An annular space is left between the cone and cup for the passage of the gaseous mixture, which, on escaping from the orifices, r, passes over the exterior surface of o, the interior of which is already heated by the flame which has not passed through the wire gauze, and has been forced by the pressure of the mixture into the interior of o. The gaseous mixture before passing through the annular space thus attains such a temperature that on escaping from the orifice its combustion is greatly promoted.




About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.


This book is part of the public domain. Various (2005). Scientific American Supplement, No. 392, July 7, 1883. Urbana, Illinois: Project Gutenberg. Retrieved https://www.gutenberg.org/cache/epub/8742/pg8742-images.html


This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.