Large Language Models (LLMs) are a subset of artificial intelligence (AI) that are designed to understand and generate natural language. These models are trained on vast amounts of textual data and use complex algorithms to learn patterns in language. LLMs have been used to develop a range of applications, from chatbots to language translation services. In this article, we will discuss how to create an LLM on a single computer and provide source code examples.
Before we begin, it’s essential to ensure that your computer meets the following requirements:
Anaconda is a popular open-source platform for data science and machine learning. It includes various tools and libraries that we will use to create an LLM. To install Anaconda, follow these steps:
Download the Anaconda installer from the official website: https://www.anaconda.com/products/individual
Open the terminal and navigate to the directory where the installer was downloaded
Run the installer by typing the following command: bash Anaconda3–2021.11-Linux-x86_64.sh
Follow the instructions on the screen to complete the installation
We will create a Python environment to install the necessary libraries and dependencies for the LLM. To create an environment, follow these steps:
Open the terminal and type the following command: conda create — name lm python=3.8
Activate the environment by typing: conda activate lm
TensorFlow is an open-source platform for building and training machine learning models. We will use TensorFlow to create the LLM. To install TensorFlow, follow these steps:
Type the following command in the terminal: pip install tensorflow
Verify that TensorFlow is installed by importing it in Python: import tensorflow as tf
Training an LLM from scratch requires an enormous amount of computational power and time. Luckily, pre-trained models are available that we can fine-tune for our specific use case. One of the most popular pre-trained LLMs is GPT-2 (Generative Pre-trained Transformer 2). To download the pre-trained GPT-2 model, follow these steps:
Open the terminal and type the following command: git clone https://github.com/openai/gpt-2.git
Navigate to the gpt-2 directory by typing: cd gpt-2
Download the pre-trained model by typing: python download_model.py 117M
Fine-tuning a pre-trained LLM involves training the model on a specific dataset for a specific task. In our example, we will fine-tune the pre-trained GPT-2 model on a text generation task. To fine-tune the model, follow these steps:
import tensorflow as tf
import numpy as np
import os
import json
import random
import time
import argparse
# Define the command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_path", type=str, required=True,
help="Path to the dataset")
parser.add_argument("--model_path", type=str, required=True,
help="Path to the pre-trained model")
parser.add_argument("--output_path", type=str, required=True,
help="Path to save the fine-tuned model")
parser.add_argument("--batch_size", type=int, default=16,
help="Batch size for training")
parser.add_argument("--epochs", type=int, default=1,
help="Number of epochs to train for")
args = parser.parse_args()
# Load the pre-trained GPT-2 model
with open(os.path.join(args.model_path, "hparams.json"), "r") as f:
hparams = json.load(f)
model = tf.compat.v1.estimator.Estimator(
model_fn=model_fn,
model_dir=args.output_path,
params=hparams,
config=tf.compat.v1.estimator.RunConfig(
save_checkpoints_steps=5000,
keep_checkpoint_max=10,
save_summary_steps=5000
)
)
# Define the input function for the dataset
def input_fn(mode):
dataset = tf.data.TextLineDataset(args.dataset_path)
dataset = dataset.repeat()
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(args.batch_size)
dataset = dataset.map(lambda x: tf.strings.substr(x, 0, hparams["n_ctx"]))
iterator = dataset.make_one_shot_iterator()
return iterator.get_next()
# Define the training function
def train():
for epoch in range(args.epochs):
model.train(input_fn=lambda: input_fn(tf.estimator.ModeKeys.TRAIN))
print(f"Epoch {epoch+1} completed.")
# Start the training
train()
In the code above, we define the command-line arguments for the dataset path, pre-trained model path, output path, batch size, and number of epochs to train for. We then load the pre-trained GPT-2 model and define the input function for the dataset. Finally, we define the training function and start the training.
Once the LLM is fine-tuned, we can use it to generate text. To generate text, follow these steps:
import tensorflow as tf
import numpy as np
import os
import json
import random
import time
import argparse
# Define the command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, required=True,
help="Path to the fine-tuned model")
parser.add_argument("--length", type=int, default=100,
help="Length of the generated text")
parser.add_argument("--temperature", type=float, default=0.7,
help="Temperature for text generation")
args = parser.parse_args()
# Load the fine-tuned model
with open(os.path.join(args.model_path, "hparams.json"), "r") as f:
hparams = json.load(f)
model_fn = model_fn(hparams, tf.estimator.ModeKeys.PREDICT)
model = tf.compat.v1.estimator.Estimator(
model_fn=model_fn,
model_dir=args.model_path,
params=hparams
)
# Define the generation function
def generate_text(length, temperature):
start_token = "<|startoftext|>"
tokens = tokenizer.convert_tokens_to_ids([start_token])
token_length = len(tokens)
while token_length < length:
prediction_input = np.array(tokens[-hparams["n_ctx"]:])
output = list(model.predict(input_fn=lambda: [[prediction_input]]))[0]["logits"]
logits = output[-1] / temperature
logits = logits - np.max(logits)
probs = np.exp(logits) / np.sum(np.exp(logits))
token = np.random.choice(range(hparams["n_vocab"]), p=probs)
tokens.append(token)
token_length += 1
output_text = tokenizer.convert_ids_to_tokens(tokens)
output_text = "".join(output_text).replace("▁", " ")
output_text = output_text.replace(start_token, "")
return output_text
# Generate text
text = generate_text(args.length, args.temperature)
print(text)
In the code above, we define the command-line arguments for the fine-tuned model path, length of the generated text, and temperature for text generation. We then load the fine-tuned model and define the generation function. Finally, we generate text using the generate_text function and print the output, and we are done!
In this article, we have learned how to create a Large Language Model (LLM) on a single computer using TensorFlow and the GPT-2 architecture. We started by installing TensorFlow and downloading the GPT-2 code from the OpenAI GitHub repository. We then trained a GPT-2 model on a dataset and fine-tuned the pre-trained GPT-2 model using the same dataset. Finally, we generated text using the fine-tuned LLM.
By following the steps in this article, you can create your own LLM and generate text for various tasks such as language translation, chatbots, and content generation.
Also published here.