paint-brush
GLASS SPINNING AND WEAVINGby@scientificamerican

GLASS SPINNING AND WEAVING

by Scientific American November 16th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

Quite recently a Pittsburg glass firm has succeeded, to a notable degree, in producing glass threads of sufficient fineness and elasticity to permit of their being woven into fabrics of novel character and quality. Their success is such as to warrant the assumption that garments of pure glass, glistening and imperishable, are among the possibilities of the near future. The spinning of glass threads of extreme fineness is not a new process, but, as carried on at present by the firm in question—Messrs. Atterbury & Co.—possesses considerable interest. From a quality of glass similar to that from which table ware is made, rods of glass averaging half an inch in diameter are drawn to any desired length and of various colors. These rods are then so placed that the flame of two gas burners is blown against that end of the rod pointed toward the large "spinning" wheel. The latter is 81/2 feet in diameter, and turns at the rate of 300 revolutions per minute. The flames, having played upon the end of the glass cylinder until a melting heat is attained, a thread of glass is drawn from the rod and affixed to the periphery of the wheel, whose face is about 12 inches wide. Motion is then communicated, and the crystal thread is drawn from between the gas jets and wrapped upon the wheel at the rate of about 7,500 feet per minute. A higher speed results in a finer filament of glass, and vice versa. During its passage from the flame to the wheel, a distance of five or six feet, the thread has become cooled, and yet its elasticity is preserved to a notable degree. The next step in the process consists in the removal of the layers of threads from the wheel. This is easily accomplished, and after being cut to the desired lengths, the filaments are woven in a loom somewhat similar to that used in weaving silken goods. Until within the past few weeks only the woof of the fabric was of glass, but at present both warp and woof are in crystal. Samples of this cloth have been forwarded to New York and to Chicago, and the manufacturers claim to be able to duplicate in colors, texture, etc., any garments sent them. A tablecloth of glass recently completed shines with a satiny, opalescent luster by day, and under gaslight shows remarkable beauty. Imitation plumes, in opal, ruby, pale green, and other hues, are also constructed of these threads, and are wonderfully pretty. The chief obstacle yet to surmount seems to lie in the manipulation of these threads, which are so fine that a bunch containing 250 is not so thick as an average sized knitting needle, and which do not possess the tractability of threads of silk or cotton.
featured image - GLASS SPINNING AND WEAVING
Scientific American  HackerNoon profile picture

Scientific American, Volume XLIII., No. 25, December 18, 1880, by Various, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. GLASS SPINNING AND WEAVING.


GLASS SPINNING AND WEAVING

Quite recently a Pittsburg glass firm has succeeded, to a notable degree, in producing glass threads of sufficient fineness and elasticity to permit of their being woven into fabrics of novel character and quality. Their success is such as to warrant the assumption that garments of pure glass, glistening and imperishable, are among the possibilities of the near future. The spinning of glass threads of extreme fineness is not a new process, but, as carried on at present by the firm in question—Messrs. Atterbury & Co.—possesses considerable interest. From a quality of glass similar to that from which table ware is made, rods of glass averaging half an inch in diameter are drawn to any desired length and of various colors. These rods are then so placed that the flame of two gas burners is blown against that end of the rod pointed toward the large "spinning" wheel. The latter is 81/2 feet in diameter, and turns at the rate of 300 revolutions per minute. The flames, having played upon the end of the glass cylinder until a melting heat is attained, a thread of glass is drawn from the rod and affixed to the periphery of the wheel, whose face is about 12 inches wide. Motion is then communicated, and the crystal thread is drawn from between the gas jets and wrapped upon the wheel at the rate of about 7,500 feet per minute. A higher speed results in a finer filament of glass, and vice versa. During its passage from the flame to the wheel, a distance of five or six feet, the thread has become cooled, and yet its elasticity is preserved to a notable degree. The next step in the process consists in the removal of the layers of threads from the wheel. This is easily accomplished, and after being cut to the desired lengths, the filaments are woven in a loom somewhat similar to that used in weaving silken goods. Until within the past few weeks only the woof of the fabric was of glass, but at present both warp and woof are in crystal. Samples of this cloth have been forwarded to New York and to Chicago, and the manufacturers claim to be able to duplicate in colors, texture, etc., any garments sent them. A tablecloth of glass recently completed shines with a satiny, opalescent luster by day, and under gaslight shows remarkable beauty. Imitation plumes, in opal, ruby, pale green, and other hues, are also constructed of these threads, and are wonderfully pretty. The chief obstacle yet to surmount seems to lie in the manipulation of these threads, which are so fine that a bunch containing 250 is not so thick as an average sized knitting needle, and which do not possess the tractability of threads of silk or cotton.


[The foregoing information is furnished by a correspondent in Pittsburg. A sample of the goods mentioned, a tablecloth of glass, is now on exhibition in this city.


The weaving of such heavy fabrics of glass for ornamental purposes and for curiosities is no new thing; nor, in our estimation, does comparative success in such experiments warrant the enthusiastic claims of the Pittsburg manufacturers touching the adaptability of glass for wearing apparel. Unless it is in their power to change the nature of glass absolutely and radically, it does not seem possible for them so to overcome the ultimate brittleness of the separate fibers as to make the fabric fit to be brought in contact with the skin. The woven stuff may be relatively tough and flexible; but unless the entire fabric can be made of one unbreakable fiber the touch of the free ends, be they never so fine, must be anything but pleasant or beneficial, if one can judge by the finest filaments of glass spun hitherto. Besides, in weaving and wearing the goods, a certain amount of fiber dust must be produced as in the case of all other textile material. When the softest of vegetable fibers are employed the air charged with their fragments is hurtful to the lungs; still more injurious must be the spiculæ of spun glass.


However, although the manufacturers are likely to be disappointed in their expectation of finding in glass a cheap and available substitute for linen, cotton, and silk in dress goods, it is quite possible that a wide range of useful application may be found for their new fabric.]



About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.


This book is part of the public domain. Various (2007). Scientific American, Volume XLIII., No. 25, December 18, 1880. Urbana, Illinois: Project Gutenberg. Retrieved https://www.gutenberg.org/cache/epub/21081/pg21081-images.html


This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.