Listen to this story
Hello there! 👋 I'm Luca, a BI Developer with a passion for all things data, Proficient in Python, SQL and Power BI
Walkthroughs, tutorials, guides, and tips. This story will teach you how to do something new or how to do something better.
import matplotlib.pyplot as plt
import numpy as np
x = np.array(['A', 'B', 'C', 'D', 'E'])
y = np.array([50, 30, 70, 80, 60])
plt.bar(x, y, align='center', width=0.5, color='b', label='data')
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('Bar chart')
plt.legend()
plt.show()
import matplotlib.pyplot as plt
import numpy as np
x = np.array(['A', 'B', 'C', 'D', 'E'])
y1 = np.array([50, 30, 70, 80, 60])
y2 = np.array([20, 40, 10, 50, 30])
plt.bar(x, y1, align='center', width=0.5, color='b', label='Series 1')
plt.bar(x, y2, bottom=y1, align='center', width=0.5, color='g', label='Series 2')
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('Stacked Bar Chart')
plt.legend()
plt.show()
import matplotlib.pyplot as plt
import numpy as np
# Prepare the data
N = 5
men_means = (20, 35, 30, 35, 27)
women_means = (25, 32, 34, 20, 25)
ind = np.arange(N) # x-axis position
width = 0.35 # width of each bar
# Plot the bar chart
fig, ax = plt.subplots()
rects1 = ax.bar(ind, men_means, width, color='r')
rects2 = ax.bar(ind + width, women_means, width, color='y')
# Add labels, legend, and axis labels
ax.set_xticks(ind + width / 2)
ax.set_xticklabels(('G1', 'G2', 'G3', 'G4', 'G5'))
ax.legend((rects1[0], rects2[0]), ('Men', 'Women'))
ax.set_xlabel('Groups')
ax.set_ylabel('Scores')
# Display the plot
plt.show()
import matplotlib.pyplot as plt
import numpy as np
# Prepare the data
x = ['Group 1', 'Group 2', 'Group 3', 'Group 4', 'Group 5']
y = np.array([[10, 20, 30],
[20, 25, 30],
[15, 30, 25],
[25, 15, 20],
[30, 20, 10]])
# calculate percentage
y_percent = y / np.sum(y, axis=1, keepdims=True) * 100
# Plot the chart
fig, ax = plt.subplots()
ax.bar(x, y_percent[:, 0], label='Series 1', color='r')
ax.bar(x, y_percent[:, 1], bottom=y_percent[:, 0], label='Series 2', color='g')
ax.bar(x, y_percent[:, 2], bottom=y_percent[:, 0] + y_percent[:, 1], label='Series 3', color='b')
# Display the plot
plt.show()
Thank you for taking the time to explore data-related insights with me. I appreciate your engagement. If you find this information helpful, I invite you to follow me or connect with me on LinkedIn or X(@Luca_DataTeam). You can also catch glimpses of my personal life on Instagram, Happy exploring!👋
Also published here.