La multicolinealidad es un desafío bien conocido en la regresión múltiple. El término se refiere a la alta correlación entre dos o más variables explicativas, es decir, predictoras. Puede ser un problema en el aprendizaje automático, pero lo que realmente importa es su caso de uso específico. En muchos casos, la regresión múltiple se usa con el propósito de comprender algo. Por ejemplo, un ecólogo podría querer saber qué tipo de factores ambientales y biológicos provocan cambios en el tamaño de la población de chimpancés. Pensamos en los algoritmos de aprendizaje automático como cajas negras que necesitan predecir, pero esa caja negra a veces también necesita ser entendida. Ahí es cuando la multicolinealidad es un problema.