paint-brush
DETECTION AND ESTIMATION OF FUSEL OILby@scientificamerican

DETECTION AND ESTIMATION OF FUSEL OIL

by Scientific American November 18th, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

Until quite recently we have had no accurate method for the determination of fusel oil in alcohol or brandy. In 1837 Meurer suggested a solution of one part of silver nitrate in nine parts of water as a reagent for its detection, stating that when added to alcohol containing fusel oil, a reddish brown color is produced, and in case large quantities are present, a dark brown precipitate is formed. It was soon found, however, that other substances than amyl alcohol produce brown colored solutions with silver nitrate; and Bouvier observed that on adding potassium iodide to alcohol containing fusel oil, the solution is colored yellow, from the decomposition of the iodide. Subsequently Böttger proved that potassium iodide is not decomposed by pure amyl alcohol, and that the decomposition is due to the presence of acids contained in fusel oil. More accurate results are obtained by using a very dilute solution of potassium permanganate, which is decomposed by amyl alcohol much more rapidly than by ethyl alcohol. Depré determines fusel oil by oxidizing a definite quantity of the alcohol in a closed vessel with potassium bichromate and sulphuric acid. after removal of excess of the oxidizing reagents, the organic acids are distilled, and, by repeated fractional distillation, the acetic acid is separated as completely as possible. The remaining acids are saturated with barium hydroxide, and the salts analyzed; a difference between the percentage of barium found and that of barium in barium acetate proves the presence of fusel oil, and the amount of difference gives some idea of its quantity. Betelli dilutes 5 c.c. of the alcohol to be tested with 6 to 7 volumes of water, and adds 15 to 20 drops of chloroform and shakes thoroughly. If fusel oil is present, its odor may be detected by evaporating the chloroform; or, by treatment with sulphuric acid and sodium acetate, the ether is obtained, which can be readily recognized. Jorissen tests for fusel oil by adding 10 drops of colorless aniline and 2 to 3 drops of hydrochloric acid to 10 c.c. of the alcohol. In the presence of fusel oil a red color is produced within a short time, which can be detected when not more than 0.1 per cent. is present. But Foerster objects to this method because he finds the color to be due to the presence of furfurol, and that pure amyl alcohol gives no color with aniline and hydrochloric acid.
featured image - DETECTION AND ESTIMATION OF FUSEL OIL
Scientific American  HackerNoon profile picture
Scientific American

Scientific American

@scientificamerican

L O A D I N G
. . . comments & more!

About Author

Scientific American  HackerNoon profile picture
Scientific American @scientificamerican

TOPICS

THIS ARTICLE WAS FEATURED IN...

Permanent on Arweave
Read on Terminal Reader
Read this story in a terminal
 Terminal
Read this story w/o Javascript
Read this story w/o Javascript
 Lite
Serendeputy
Garker