Hackernoon logoClassify Handwritten Digits using Deep learning with Tensorflow by@itsvinayak

Classify Handwritten Digits using Deep learning with Tensorflow

Author profile picture

@itsvinayakvinayak

Computer Science and Engineering student

Deep learning is a subpart of machine learning and artificial intelligence which is also known as deep neural network this networks capable of learning unsupervised from provided data which is unorganized or unlabeled. today, we will implement a neural network in 6 easy steps using TensorFlow to classify handwritten digits.
Modules required :
NumPy:
$ pip install numpy 
Matplotlib:
$ pip install matplotlib 
Tensorflow:
$ pip install tensorflow 

Steps to follow:

Step 1 : Importing all dependence
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
Step 2 : Import data and normalize it
mnist = tf.keras.datasets.mnist
(x_train,y_train) , (x_test,y_test) = mnist.load_data()
 
x_train = tf.keras.utils.normalize(x_train,axis=1)
x_test = tf.keras.utils.normalize(x_test,axis=1)
Step 3 : view data
def draw(n):
    plt.imshow(n,cmap=plt.cm.binary)
    plt.show() 
     
draw(x_train[0])
Step 4 : make a neural network and train it
#there are two types of models
#sequential is most common
 
model = tf.keras.models.Sequential()
 
model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
#reshape
 
model.add(tf.keras.layers.Dense(128,activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(128,activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(10,activation=tf.nn.softmax))
 
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy']
              )
model.fit(x_train,y_train,epochs=3)
Step 5 : check model accuracy and loss
val_loss,val_acc = model.evaluate(x_test,y_test)
print("loss-> ",val_loss,"\nacc-> ",val_acc)
Step 6 : prediction using model
predictions=model.predict([x_test])
print('lable -> ',y_test[2])
print('prediction -> ',np.argmax(predictions[2]))
 
draw(x_test[2])

Tags

The Noonification banner

Subscribe to get your daily round-up of top tech stories!