paint-brush
Boosting Fairness and Robustness in Over-the-Air Federated Learning: Problem Setupby@computational

Boosting Fairness and Robustness in Over-the-Air Federated Learning: Problem Setup

by Computational Technology for All
Computational Technology for All HackerNoon profile picture

Computational Technology for All

@computational

Computational: We take random inputs, follow complex steps, and hope...

October 27th, 2024
Read on Terminal Reader
Read this story in a terminal
Print this story
Read this story w/o Javascript
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

This paper presents a federated learning algorithm using Over-the-Air computation for fairness and robustness, optimizing performance in decentralized networks.
featured image - Boosting Fairness and Robustness in Over-the-Air Federated Learning: Problem Setup
1x
Read by Dr. One voice-avatar

Listen to this story

Computational Technology for All HackerNoon profile picture
Computational Technology for All

Computational Technology for All

@computational

Computational: We take random inputs, follow complex steps, and hope the output makes sense. And then blog about it.

Learn More
LEARN MORE ABOUT @COMPUTATIONAL'S
EXPERTISE AND PLACE ON THE INTERNET.
0-item

STORY’S CREDIBILITY

Academic Research Paper

Academic Research Paper

Part of HackerNoon's growing list of open-source research papers, promoting free access to academic material.

Authors:

(1) Halil Yigit Oksuz, Control Systems Group at Technische Universitat Berlin, Germany and Exzellenzcluster Science of Intelligence, Technische Universitat Berlin, Marchstr. 23, 10587, Berlin, Germany;

(2) Fabio Molinari, Control Systems Group at Technische Universitat Berlin, Germany;

(3) Henning Sprekeler, Exzellenzcluster Science of Intelligence, Technische Universit¨at Berlin, Marchstr. 23, 10587, Berlin, Germany and Modelling Cognitive Processes Group at Technische Universit¨at Berlin, Germany;

(4) Jorg Raisch, Control Systems Group at Technische Universitat Berlin, Germany and Exzellenzcluster Science of Intelligence, Technische Universitat Berlin, Marchstr. 23, 10587, Berlin, Germany.

Abstract and Introduction

Problem Setup

Federated fair over-the-air learning (FedAir) Algorithm

Convergence Properties

Numerical Example

Conclusion and References

II. PROBLEM SETUP

image


A. Minmax Reformulation


In a federated learning setting with N agents, where V = {1,2,··· ,N} denotes the index set, we are interested in improving the performance of the worst-performing agent by solving the following optimization problem:


image


We aim to compute a parameter vector estimate minimizing the worst-case loss observed among all agents, thus providing some form of fairness [20], [21]. However, it is difficult and inefficient to use (3) directly for federated learning purposes. Instead, we can consider an alternative (epigraph) form:


image


B. Over-the-Air Communication Mode


image


This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

Computational Technology for All HackerNoon profile picture
Computational Technology for All@computational
Computational: We take random inputs, follow complex steps, and hope the output makes sense. And then blog about it.

TOPICS

THIS ARTICLE WAS FEATURED IN...

Arweave
Read on Terminal Reader
Read this story in a terminal
 Terminal
Read this story w/o Javascript
Read this story w/o Javascript
 Lite
Hackernoon
X
Threads
X REMOVE AD