paint-brush
এলএলএম এবং জেনারেটিভ এআই ব্যবহার করে গ্লোবাল ব্র্যান্ডের 9টি দুর্দান্ত কেস স্টাডি দ্বারা@mindysupport
6,149 পড়া
6,149 পড়া

এলএলএম এবং জেনারেটিভ এআই ব্যবহার করে গ্লোবাল ব্র্যান্ডের 9টি দুর্দান্ত কেস স্টাডি

দ্বারা Mindy Support
Mindy Support  HackerNoon profile picture

Mindy Support

@mindysupport

Global Data Annotation and Generative AI Services Provider. Trusted partner...

6 মিনিট read2024/08/08
Read on Terminal Reader
Read this story in a terminal
Print this story
tldt arrow
bn-flagBN
এই গল্পটি বাংলায় পড়ুন!
en-flagEN
Read this story in the original language, English!
ru-flagRU
Прочтите эту историю на русском языке!
tr-flagTR
Bu hikayeyi Türkçe okuyun!
ko-flagKO
이 이야기를 한국어로 읽어보세요!
de-flagDE
Lesen Sie diese Geschichte auf Deutsch!
es-flagES
Lee esta historia en Español!
hi-flagHI
इस कहानी को हिंदी में पढ़ें!
zh-flagZH
用繁體中文閱讀這個故事!
vi-flagVI
Đọc bài viết này bằng tiếng Việt!
fr-flagFR
Lisez cette histoire en Français!
pt-flagPT
Leia esta história em português!
ja-flagJA
この物語を日本語で読んでください!
BN

অতিদীর্ঘ; পড়তে

কোম্পানিগুলো তাদের প্রতিদ্বন্দ্বীদের থেকে এগিয়ে যাওয়ার জন্য অত্যাধুনিক এআই প্রযুক্তি ব্যবহার করছে। তারা গ্রাহক পরিষেবা উন্নত করছে, বিষয়বস্তু উৎপাদনে বিপ্লব ঘটাচ্ছে এবং জটিল ডেটা বিশ্লেষণকে সরল করছে। এই নিবন্ধটি বাস্তব জীবনের জেনারেটিভ এআই উদাহরণ এবং শীর্ষ সংস্থাগুলি কীভাবে এটি ব্যবহার করছে সে সম্পর্কে কেস স্টাডি দেখায়।
featured image - এলএলএম এবং জেনারেটিভ এআই ব্যবহার করে গ্লোবাল ব্র্যান্ডের 9টি দুর্দান্ত কেস স্টাডি
Mindy Support  HackerNoon profile picture
Mindy Support

Mindy Support

@mindysupport

Global Data Annotation and Generative AI Services Provider. Trusted partner for GAFAM and Fortune 500 companies.

By Olga Rotanenko, Commercial Director at Mindy Support


কোম্পানিগুলি তাদের প্রতিদ্বন্দ্বীদের থেকে এগিয়ে যাওয়ার জন্য অত্যাধুনিক এআই প্রযুক্তি ব্যবহার করছে। তারা গ্রাহক পরিষেবা উন্নত করছে, বিষয়বস্তু উৎপাদনে বিপ্লব ঘটাচ্ছে এবং জটিল ডেটা বিশ্লেষণকে সরল করছে।


এই নিবন্ধটি বাস্তব জীবনের জেনারেটিভ এআই উদাহরণ এবং শীর্ষ সংস্থাগুলি কীভাবে এলএলএম ব্যবহার করছে সে সম্পর্কে কেস স্টাডি দেখায় এবং জেনারেটিভ এআই তাদের কাজে নতুন ধারনা নিয়ে আসা, উৎপাদনশীলতা বৃদ্ধি করা এবং বৃদ্ধি করা।

এলএলএম এবং জেনারেটিভ এআই-এর বাস্তব-বিশ্বের উদাহরণ:

বর্ধিত গ্রাহক পরিষেবাতে আমাজনের যাত্রা

image

অ্যামাজন, ই-কমার্স জগতের একটি দৈত্য যা শিশু সহ সকলের কাছে পরিচিত, কেবল কেনাকাটা নয়। এটি বড় ভাষা মডেল (এলএলএম) এর মতো অত্যাধুনিক প্রযুক্তি ব্যবহার করার ক্ষেত্রেও একটি নেতা। এলএলএম প্রযুক্তির ব্যবহার করে, অ্যামাজনের চ্যাটবটগুলি স্বাভাবিক ভাষা বুঝতে এবং প্রক্রিয়া করতে পারে, গ্রাহকদের তাদের প্রশ্ন এবং উদ্বেগের দ্রুত এবং প্রাসঙ্গিক প্রতিক্রিয়া প্রদান করে। এই একীকরণ গ্রাহক সন্তুষ্টির উন্নতির দিকে পরিচালিত করেছে, কারণ সমস্যাগুলি আরও দ্রুত এবং আরও নির্ভুলতার সাথে সমাধান করা হয়।

\Amazon জটিল বা সংক্ষিপ্ত সমস্যাগুলি পরিচালনা করার ক্ষেত্রে মানব এজেন্টদের গুরুত্ব স্বীকার করে যা AI সম্পূর্ণরূপে বুঝতে পারে না। এই হাইব্রিড পদ্ধতি AI এবং মানুষের বুদ্ধিমত্তা উভয়ের শক্তিকে একত্রিত করে, একটি সুষম এবং কার্যকর গ্রাহক পরিষেবা অপারেশন নিশ্চিত করে।


ব্যবহৃত প্রযুক্তি: অ্যামাজন লেক্স

কোকা-কোলার উদ্ভাবনী মার্কেটিং

image

চলুন, সবচেয়ে আইকনিক ব্র্যান্ডগুলির মধ্যে একটি, কোকা-কোলা, যেটি সর্বদাই এর বিপণন প্রচেষ্টাকে অগ্রাধিকার দেয়। GPT-4-এর মতো উন্নত ভাষার মডেলগুলিকে একীভূত করার মাধ্যমে, কোম্পানিটি উচ্চ-মানের সামগ্রীর একটি বৈচিত্র্যময় পরিসর তৈরি করতে সক্ষম হয়েছে, যার মধ্যে রয়েছে সোশ্যাল মিডিয়া পোস্টগুলি আকর্ষক মার্কেটিং কপি এবং তথ্যমূলক নিবন্ধগুলি। GPT-4-এর ক্ষমতা মানুষের মতো লেখা তৈরি করার ক্ষমতা কোকা-কোলাকে একাধিক প্ল্যাটফর্ম জুড়ে একটি সামঞ্জস্যপূর্ণ এবং খাঁটি ব্র্যান্ড ভয়েস বজায় রাখতে দেয়।

\ বিষয়বস্তু তৈরির বাইরে, কোকা-কোলা ভোক্তাদের পছন্দ এবং বাজারের প্রবণতা সম্পর্কে মূল্যবান অন্তর্দৃষ্টি পেতে GPT-4 ব্যবহার করেছে। বিপুল পরিমাণ ডেটা বিশ্লেষণ করে এবং ব্যাপক প্রতিবেদন তৈরি করে, GPT-4 কোম্পানিকে ভোক্তাদের আচরণে উদীয়মান নিদর্শন এবং পরিবর্তনগুলি বুঝতে সাহায্য করে।


ব্যবহৃত প্রযুক্তি: OpenAI এর GPT-4

JPMorgan চেজের ডেটা বিশ্লেষণ বিপ্লব

image

JP Morgan Chase কার্যকরভাবে IBM Watson কে তার আর্থিক ক্রিয়াকলাপের মধ্যে নির্ভুলতা এবং দক্ষতা বাড়াতে ব্যবহার করেছে, যার ফলে কর্মক্ষমতা এবং ক্লায়েন্ট সন্তুষ্টি উভয় ক্ষেত্রেই উল্লেখযোগ্য উন্নতি হয়েছে।


উদাহরণস্বরূপ, ওয়াটসনের ন্যাচারাল ল্যাঙ্গুয়েজ প্রসেসিং (এনএলপি) ব্যাঙ্ককে উচ্চ নির্ভুলতার সাথে আইনী নথি এবং আর্থিক প্রতিবেদনের মতো বিশাল পরিমাণ অসংগঠিত ডেটা দ্রুত বিশ্লেষণ করতে দেয়। এই অটোমেশন জটিল তথ্য প্রক্রিয়াকরণের জন্য প্রয়োজনীয় সময়কে কমিয়ে দেয় না বরং আরও সঠিক এবং নির্ভরযোগ্য ফলাফল নিশ্চিত করে মানুষের ত্রুটির ঝুঁকিও কমিয়ে দেয়।

অধিকন্তু, JP Morgan Chase IBM Watson-এর ঝুঁকি ব্যবস্থাপনা এবং জালিয়াতি সনাক্তকরণ ব্যবস্থাকে শক্তিশালী করার জন্য নিযুক্ত করেছে। ওয়াটসনের মেশিন লার্নিং অ্যালগরিদমগুলি ক্রমাগত লেনদেন সংক্রান্ত ডেটা বিশ্লেষণ করে এবং অস্বাভাবিক নিদর্শনগুলি সনাক্ত করে যা প্রতারণামূলক কার্যকলাপ নির্দেশ করতে পারে।


ব্যবহৃত প্রযুক্তি: আইবিএম ওয়াটসন

Netflix এর ব্যক্তিগতকৃত সুপারিশ

image

এখানে কোন Netflix প্রেমিক আছে? স্ন্যাকস নিয়ে সোফায় বসে থাকার কথা কল্পনা করুন, আপনার প্রিয় সিরিজ এবং সিনেমা উপভোগ করুন। Netflix আপনার পছন্দগুলিকে গুরুত্ব সহকারে নেয়, উন্নত প্রযুক্তি ব্যবহার করে তার সুপারিশ ব্যবস্থাকে উন্নত করে৷ বিস্তৃত ব্যবহারকারীর ডেটা বিশ্লেষণ করে, যেমন দেখার ইতিহাস এবং মিথস্ক্রিয়া প্যাটার্ন, Netflix ব্যক্তিগত রুচির গভীর উপলব্ধি অর্জন করে। এটি তাদের আপনার অনন্য আগ্রহের সাথে ঘনিষ্ঠভাবে মেলে এমন সামগ্রীর পরামর্শ দিতে সক্ষম করে, আপনার সামগ্রিক অভিজ্ঞতা এবং সন্তুষ্টিকে উন্নত করে৷ এই ব্যক্তিগতকৃত পদ্ধতি শুধুমাত্র দর্শকদের নিযুক্ত রাখে না বরং নতুন বিষয়বস্তু আবিষ্কার করতেও সাহায্য করে যা তারা নিজেরাই খুঁজে পায়নি।


প্রযুক্তি ব্যবহার করা হয়েছে: BERT-এর মতো এলএলএম দ্বারা উন্নত মালিকানা সুপারিশ অ্যালগরিদম।

Spotify এর সঙ্গীত সুপারিশ সিস্টেম

image

এটা স্বীকার করুন, আপনি হয় একজন Spotify বা Apple Music ব্যবহারকারী। আমি আপনাকে একটি গোপন কথা বলতে দেব: আমি একজন স্পটিফাই মেয়ে। নেটফ্লিক্সের মতো, স্পটিফাই তার সঙ্গীত সুপারিশ এবং আবিষ্কার বৈশিষ্ট্যগুলিকে উন্নত করতে বৃহৎ ভাষার মডেল (এলএলএম) ব্যবহার করে। ব্যবহারকারীর শোনার অভ্যাস, প্লেলিস্ট এবং প্ল্যাটফর্মের সাথে মিথস্ক্রিয়া বিশ্লেষণ করে, এই মডেলগুলি স্পটিফাইকে স্বতন্ত্র সঙ্গীত পছন্দগুলি বুঝতে এবং ব্যবহারকারীরা কোন গান বা শিল্পীগুলি উপভোগ করবে তা ভবিষ্যদ্বাণী করতে সক্ষম করে৷ এই ব্যক্তিগতকৃত পদ্ধতি ব্যবহারকারীদের তাদের পছন্দ হতে পারে এমন নতুন সঙ্গীতের সাথে পরিচয় করিয়ে দেয় না বরং তাদের প্ল্যাটফর্মের সাথে জড়িত রাখে। এটি এমন একটি ব্যক্তিগত ডিজে থাকার মতো যিনি জানেন যে আপনি ঠিক কী শুনতে চান, এমনকি আপনি করার আগেও।


প্রযুক্তি ব্যবহৃত: মালিকানাধীন AI মডেল এবং BERT-ভিত্তিক সিস্টেম

নিউ ইয়র্ক টাইমস এর বিষয়বস্তু ব্যক্তিগতকরণ

image

নিউ ইয়র্ক টাইমস, একটি নেতৃস্থানীয় বৈশ্বিক মিডিয়া আউটলেট, বিজ্ঞাপনের কৌশলগুলি অপ্টিমাইজ করার জন্য জেনারেটিভ এআই ব্যবহার করছে৷ এই প্রযুক্তিটি বিজ্ঞাপনদাতাদের বিজ্ঞাপনের বার্তার উপর ভিত্তি করে বিজ্ঞাপন প্রচারের জন্য সর্বোত্তম স্থান নির্ধারণের পরামর্শ দিয়ে তাদের প্রভাব সর্বাধিক করতে সক্ষম করে। এটি আরও সুনির্দিষ্ট এবং কার্যকর বিপণন পদ্ধতি নিশ্চিত করে বিশেষ শ্রোতাদের সনাক্ত করতে এবং লক্ষ্য করতে সহায়তা করে যেগুলিতে পৌঁছানো আগে কঠিন ছিল। শ্রোতা বিভাজন এবং বিজ্ঞাপন স্থান নির্ধারণ করে, এই AI টুলটি শুধুমাত্র প্রচারাভিযানের কর্মক্ষমতা বাড়ায় না বরং বিজ্ঞাপনদাতাদের জন্য বিনিয়োগের উপর রিটার্নও বাড়ায়। এই উদ্ভাবন প্রদর্শন করে


ব্যবহৃত প্রযুক্তি: OpenAI এর GPT-3

সুপার বোল বিজ্ঞাপন প্রচারাভিযান

image

"যদি এটা কোন ব্যাপার না যে কে জিতে বা হারলো, তাহলে তারা কেন স্কোর রাখবে?" আমেরিকার অন্যতম সেরা কোচ, ভিন্স লোম্বার্ডির এই বিখ্যাত উক্তিটি প্রতিযোগিতামূলক মনোভাবকে পুরোপুরি ক্যাপচার করে যা সুপার বোলকে ক্রীড়া বিনোদনের শীর্ষে রাখে। লক্ষ লক্ষ দর্শকের সাথে, সুপার বোল তথ্যের সোনার খনি। জেনারেটিভ এআই এই বিপুল পরিমাণ দর্শকের ডেটা বিশ্লেষণ করে উচ্চ লক্ষ্যযুক্ত বিজ্ঞাপন তৈরি করতে পারে যা তাদের পছন্দ এবং আচরণের উপর ভিত্তি করে বিভিন্ন দর্শক বিভাগের সাথে অনুরণিত হয়। এই প্রযুক্তি শুধুমাত্র বিজ্ঞাপনের প্রাসঙ্গিকতা এবং প্রভাব বাড়ায় না বরং ব্র্যান্ডগুলিকে তাদের দর্শকদের সাথে আরও গভীরভাবে সংযোগ করতে সাহায্য করে। সুপার বোল যেমন বিকশিত হয়, তেমনি সরঞ্জাম এবং কৌশলগুলিও এটিকে একটি বিপণন পাওয়ার হাউস করে তোলে।


ব্যবহৃত প্রযুক্তি: বিষয়বস্তু তৈরি এবং বিশ্লেষণের জন্য বিভিন্ন এলএলএম

স্বাস্থ্যসেবায় আইবিএম এর ওয়াটসন

image

স্বাস্থ্যসেবা খাতে, আইবিএম ওয়াটসন ক্লিনিকাল সিদ্ধান্ত সমর্থনে বিপ্লব আনতে বড় ভাষা মডেল (এলএলএম) ব্যবহার করছে। প্রচুর পরিমাণে চিকিৎসা সাহিত্য এবং রোগীর তথ্য বিশ্লেষণ করে, ওয়াটসন প্রমাণ-ভিত্তিক রোগ নির্ণয় এবং চিকিত্সার সুপারিশ প্রদান করেন। এই উন্নত এআই প্রযুক্তি স্বাস্থ্যসেবা পেশাদারদের আরও সচেতন সিদ্ধান্ত নিতে, রোগীর ফলাফলের উন্নতি করতে এবং ডায়াগনস্টিক প্রক্রিয়াকে সুগম করতে সহায়তা করে। উপরন্তু, ওয়াটসন স্বাস্থ্যসেবার উদীয়মান প্রবণতা এবং নিদর্শনগুলি সনাক্ত করতে পারে, রোগের প্রাথমিক সনাক্তকরণ এবং প্রতিরোধে অবদান রাখে।


ব্যবহৃত প্রযুক্তি: আইবিএম ওয়াটসন স্বাস্থ্য

এলএলএম-এর মাধ্যমে সাফল্য অর্জনের জন্য অত্যাধুনিক প্রযুক্তির ব্যবহার

image

লার্জ ল্যাঙ্গুয়েজ মডেল (LLMs) বিভিন্ন প্রযুক্তি এবং কৌশল ব্যবহার করে। এখানে জড়িত কিছু মূল প্রযুক্তির সংক্ষিপ্তসার দেওয়া হল:


  1. গভীর শিক্ষা: এলএলএম-এর পিছনে মূল প্রযুক্তি। এই মডেলগুলি পাঠ্য প্রক্রিয়া এবং তৈরি করতে অনেক স্তর সহ নিউরাল নেটওয়ার্ক ব্যবহার করে।
  2. ট্রান্সফরমার: ভাসওয়ানি এট আল দ্বারা প্রবর্তিত এক ধরনের নিউরাল নেটওয়ার্ক আর্কিটেকচার। কাগজে "মনোযোগ আপনার প্রয়োজন।" টেক্সটে দীর্ঘ-পরিসর নির্ভরতা পরিচালনার জন্য ট্রান্সফরমারগুলি অত্যন্ত গুরুত্বপূর্ণ এবং অনেক LLM-এর ভিত্তি।
  3. অ্যাটেনশন মেকানিজম: ট্রান্সফরমারগুলির একটি উপাদান যা ভাষা তৈরি বা বোঝার সময় ইনপুট পাঠ্যের বিভিন্ন অংশে মডেল ফোকাস করতে সহায়তা করে।
  4. প্রাক-প্রশিক্ষণ এবং ফাইন-টিউনিং:
    • প্রাক-প্রশিক্ষণ: এলএলএমগুলিকে প্রাথমিকভাবে সাধারণ ভাষার প্যাটার্নগুলি শেখার জন্য পাঠ্য ডেটার একটি বড় কর্পোরাতে প্রশিক্ষণ দেওয়া হয়।
    • ফাইন-টিউনিং: প্রাক-প্রশিক্ষণের পরে, নির্দিষ্ট কাজ বা ডোমেনে বিশেষজ্ঞ করার জন্য মডেলগুলিকে নির্দিষ্ট ডেটাসেটে আরও প্রশিক্ষণ দেওয়া হয়।
  5. টোকেনাইজেশন: মডেলটি প্রক্রিয়া করতে পারে এমন ছোট ইউনিটে (টোকেন) পাঠ্যকে ভেঙে ফেলার প্রক্রিয়া। বাইট পেয়ার এনকোডিং (BPE) বা WordPiece-এর মতো কৌশলগুলি প্রায়শই ব্যবহৃত হয়।
  6. ন্যাচারাল ল্যাঙ্গুয়েজ প্রসেসিং (এনএলপি) টেকনিক: পার্সিং, পার্ট-অফ-স্পীচ ট্যাগিং এবং নামকৃত সত্তার স্বীকৃতি সহ মানুষের ভাষা প্রক্রিয়া ও বোঝার জন্য ব্যবহৃত বিভিন্ন কৌশল এবং অ্যালগরিদম।
  7. মূল্যায়ন মেট্রিক্স: বিভ্রান্তি, BLEU স্কোর এবং অন্যান্য মেট্রিক্স ভাষা মডেলের কর্মক্ষমতা মূল্যায়ন করতে ব্যবহৃত হয়।
  8. নীতিশাস্ত্র এবং নিরাপত্তা ব্যবস্থা: প্রযুক্তি এবং নির্দেশিকাগুলি নিশ্চিত করার জন্য যে মডেলগুলি দায়িত্বশীল এবং নৈতিকভাবে ব্যবহার করা হয়, ক্ষতিকারক আউটপুটগুলি প্রতিরোধ করার ব্যবস্থা সহ।

উপসংহার

আপনি ইতিমধ্যেই দেখতে পাচ্ছেন যে কীভাবে এলএলএমগুলি বিশ্বব্যাপী তরঙ্গ তৈরি করছে, এবং আগামীকাল, তারা আরও বেশি অবিচ্ছেদ্য হয়ে উঠবে কারণ নেতৃস্থানীয় কোম্পানিগুলি তাদের প্রচেষ্টাকে বাড়িয়ে তুলতে তাদের গ্রহণ করবে। আমাজনের চ্যাটবট থেকে গ্রাহক পরিষেবা বৃদ্ধি করে কোকা-কোলার সৃজনশীল বিষয়বস্তু এবং আইবিএম ওয়াটসনের সাথে জেপি মরগান চেজের আর্থিক অপ্টিমাইজেশন, এই প্রযুক্তিগুলি উদ্ভাবন এবং দক্ষতার চালনা করছে। Netflix-এর ব্যক্তিগতকৃত সুপারিশ এবং Salesforce-এর স্বয়ংক্রিয় প্রতিবেদনগুলি উপযুক্ত অভিজ্ঞতা এবং বিশ্লেষণের উপর AI-এর প্রভাব প্রদর্শন করে৷ যেহেতু আরও কোম্পানি এই সরঞ্জামগুলিকে আলিঙ্গন করে, তারা কেবল তাদের ক্রিয়াকলাপগুলিকে পরিমার্জন করছে না বরং এআই সাফল্যের জন্য নতুন মানও স্থাপন করছে। মূল পদক্ষেপগুলি ক্রমাগত শিক্ষা, মানব-এআই সহযোগিতা এবং নৈতিক অনুশীলনের প্রয়োজনীয়তা তুলে ধরে, যা ভবিষ্যতের সাফল্যের জন্য মঞ্চ তৈরি করে।


ওলগা রোটানেঙ্কো দ্বারা

Mindy সাপোর্টে বাণিজ্যিক পরিচালক

L O A D I N G
. . . comments & more!

About Author

Mindy Support  HackerNoon profile picture
Mindy Support @mindysupport
Global Data Annotation and Generative AI Services Provider. Trusted partner for GAFAM and Fortune 500 companies.

আসে ট্যাগ

এই নিবন্ধটি উপস্থাপন করা হয়েছে...

Read on Terminal Reader
Read this story in a terminal
 Terminal
Read this story w/o Javascript
Read this story w/o Javascript
 Lite
X REMOVE AD