Darwinism, Stated by Darwin himself, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. THE PROVISIONAL HYPOTHESIS OF PANGENESIS
Every one would wish to explain to himself, even in an imperfect manner, how it is possible for a character possessed by some remote ancestor suddenly to reappear in the offspring; how the effects of increased or decreased use of a limb can be transmitted to the child; how the male sexual element can act not solely on the ovules, but occasionally on the mother-form; how a hybrid can be produced by the union of the cellular tissue of two plants independently of the organs of generation; how a limb can be reproduced on the exact line of amputation, with neither too much nor too little added; how the same organism may be produced by such widely different processes as budding and true seminal generation; and, lastly, how, of two allied forms, one passes in the course of its development through the most complex metamorphoses, and the other does not do so, though when mature both are alike in every detail of structure. I am aware that my view is merely a provisional hypothesis or speculation; but, until a better one be advanced, it will serve to bring together a multitude of facts which are at present left disconnected by any efficient cause. As Whewell, the historian of the inductive sciences, remarks, “Hypotheses may often be of service to science when they involve a certain portion of incompleteness, and even of error.” Under this point of view I venture to advance the hypothesis of pangenesis, which implies that every separate part of the whole organization reproduces itself. So that ovules, spermatozoa, and pollen-grains—the fertilized egg or seed, as well as buds—include and consist of a multitude of germs thrown off from each separate part or unit.
FUNCTIONAL INDEPENDENCE OF THE UNITS OF THE BODY.
Physiologists agree that the whole organism consists of a multitude of elemental parts, which are to a great extent independent of one another. Each organ, says Claude Bernard, has its proper life, its autonomy; it can develop and reproduce itself independently of the adjoining tissues. A great German authority, Virchow, asserts still more emphatically that each system consists of an “enormous mass of minute centers of action.... Every element has its own special action, and, even though it derive its stimulus to activity from other parts, yet alone effects the actual performance of duties.... Every single epithelial and muscular fiber-cell leads a sort of parasitical existence in relation to the rest of the body.... Every single bone-corpuscle really possesses conditions of nutrition peculiar to itself.” Each element, as Sir J. Paget remarks, lives its appointed time and then dies, and is replaced after being cast off or absorbed. I presume that no physiologist doubts that, for instance, each bone-corpuscle of the finger differs from the corresponding corpuscle in the corresponding joint of the toe; and there can hardly be a doubt that even those on the corresponding sides of the body differ, though almost identical in nature. This near approach to identity is curiously shown in many diseases in which the same exact points on the right and left sides of the body are similarly affected; thus Sir J. Paget gives a drawing of a diseased pelvis, in which the bone has grown into a most complicated pattern, but “there is not one spot or line on one side which is not represented, as exactly as it would be in a mirror, on the other.”
Many facts support this view of the independent life of each minute element of the body. Virchow insists that a single bone-corpuscle or a single cell in the skin may become diseased. The spur of a cock, after being inserted into the ear of an ox, lived for eight years, and acquired a weight of three hundred and ninety-six grammes (nearly fourteen ounces) and the astonishing length of twenty-four centimetres, or about nine inches; so that the head of the ox appeared to bear three horns. The tail of a pig has been grafted into the middle of its back, and reacquired sensibility. Dr. Ollier inserted a piece of periosteum from the bone of a young dog under the skin of a rabbit, and true bone was developed. A multitude of similar facts could be given.
* * * * *
What can be more wonderful than that characters, which have disappeared during scores, or hundreds, or even thousands of generations, should suddenly reappear perfectly developed, as in the case of pigeons and fowls, both when purely bred and especially when crossed; or as with the zebrine stripes on dun-colored horses, and other such cases? Many monstrosities come under this same head, as when rudimentary organs are redeveloped, or when an organ which we must believe was possessed by an early progenitor of the species, but of which not even a rudiment is left, suddenly reappears, as with the fifth stamen in some Scrophulariaceæ.
* * * * *
In every living creature we may feel assured that a host of long-lost characters lie ready to be evolved under proper conditions. How can we make intelligible, and connect with other facts, this wonderful and common capacity of reversion—this power of calling back to life long-lost characters?
* * * * *
Imperfect nails sometimes appear on the stumps of the amputated fingers of man; and it is an interesting fact that with the snake-like saurians, which present a series with more and more imperfect limbs, the terminations of the phalanges first disappear, “the nails becoming transferred to their proximal remnants, or even to parts which are not phalanges.”
* * * * *
Mr. Salter and Dr. Maxwell Masters have found pollen within the ovules of the passion-flower and of the rose. Buds may be developed in the most unnatural positions, as on the petal of a flower. Numerous analogous facts could be given.
I do not know how physiologists look at such facts as the foregoing. According to the doctrine of pangenesis, the gemmules of the transposed organs become developed in the wrong place, from uniting with wrong cells or aggregates of cells during their nascent state; and this would follow from a slight modification in their elective affinities.
* * * * *
On any ordinary view it is unintelligible how changed conditions, whether acting on the embryo, the young or the adult, can cause inherited modifications. It is equally or even more unintelligible, on any ordinary view, how the effects of the long-continued use or disuse of a part, or of changed habits of body or mind, can be inherited. A more perplexing problem can hardly be proposed; but on our view we have only to suppose that certain cells become at last structurally modified, and that these throw off similarly modified gemmules. This may occur at any period of development, and the modification will be inherited at a corresponding period; for the modified gemmules will unite in all ordinary cases with the proper preceding cells, and will consequently be developed at the same period at which the modification first arose. With respect to mental habits or instincts, we are so profoundly ignorant of the relation between the brain and the power of thought that we do not know positively whether a fixed habit induces any change in the nervous system, though this seems highly probable; but, when such habit or other mental attribute, or insanity, is inherited, we must believe that some actual modification is transmitted; and this implies, according to our hypothesis, that gemmules derived from modified nerve-cells are transmitted to the offspring.
NECESSARY ASSUMPTIONS.
I have now enumerated the chief facts which every one would desire to see connected by some intelligible bond. This can be done, if we make the following assumptions, and much may be advanced in favor of the chief one. The secondary assumptions can likewise be supported by various physiological considerations. It is universally admitted that the cells or units of the body increase by self-division or proliferation, retaining the same nature, and that they ultimately become converted into the various tissues and substances of the body. But besides this means of increase I assume that the units throw off minute granules which are dispersed throughout the whole system; that these, when supplied with proper nutriment, multiply by self-division, and are ultimately developed into units like those from which they were originally derived. These granules may be called gemmules. They are collected from all parts of the system to constitute the sexual elements, and their development in the next generation forms a new being; but they are likewise capable of transmission in a dormant state to future generations and may then be developed. Their development depends on their union with other partially developed, or nascent cells which precede them in the regular course of growth. Why I use the term union will be seen when we discuss the direct action of pollen on the tissues of the mother-plant. Gemmules are supposed to be thrown off by every unit, not only during the adult state, but during each stage of development of every organism; but not necessarily during the continued existence of the same unit. Lastly, I assume that the gemmules in their dormant state have a mutual affinity for each other, leading to their aggregation into buds or into the sexual elements. Hence, it is not the reproductive organs or buds which generate new organisms, but the units of which each individual is composed. These assumptions constitute the provisional hypothesis which I have called pangenesis.
* * * * *
But I have further to assume that the gemmules in their undeveloped state are capable of largely multiplying themselves by self-division, like independent organisms. Delpino insists that to “admit of multiplication by fissiparity in corpuscles, analogous to seeds or buds ... is repugnant to all analogy.” But this seems a strange objection, as Thuret has seen the zoöspore of an alga divide itself, and each half germinated. Haeckel divided the segmented ovum of a siphonophora into many pieces, and these were developed. Nor does the extreme minuteness of the gemmules, which can hardly differ much in nature from the lowest and simplest organisms, render it improbable that they should grow and multiply. A great authority, Dr. Beale, says that “minute yeast-cells are capable of throwing off buds or gemmules, much less than the 1/100000 of an inch in diameter”; and these he thinks are “capable of subdivision practically ad infinitum.”
A particle of small-pox matter, so minute as to be borne by the wind, must multiply itself many thousandfold in a person thus inoculated; and so with the contagious matter of scarlet fever. It has recently been ascertained that a minute portion of the mucous discharge from an animal affected with rinderpest, if placed in the blood of a healthy ox, increases so fast that in a short space of time “the whole mass of blood, weighing many pounds, is infected, and every small particle of that blood contains enough poison to give, within less than forty-eight hours, the disease to another animal.”
* * * * *
The gemmules derived from each part or organ must be thoroughly dispersed throughout the whole system. We know, for instance, that even a minute fragment of a leaf of a begonia will reproduce the whole plant; and that if a fresh-water worm is chopped into small pieces, each will reproduce the whole animal. Considering also the minuteness of the gemmules and the permeability of all organic tissues, the thorough dispersion of the gemmules is not surprising. That matter may be readily transferred without the aid of vessels from part to part of the body, we have a good instance in a case recorded by Sir J. Paget of a lady, whose hair lost its color at each successive attack of neuralgia and recovered it again in the course of a few days. With plants, however, and probably with compound animals, such as corals, the gemmules do not ordinarily spread from bud to bud, but are confined to the parts developed from each separate bud; and of this fact no explanation can be given.
TWO OBJECTIONS ANSWERED.
But we have here to encounter two objections which apply not only to the regrowth of a part, or of a bisected individual, but to fissiparous generation and budding. The first objection is that the part which is reproduced is in the same stage of development as that of the being which has been operated on or bisected; and in the case of buds, that the new beings thus produced are in the same stage as that of the budding parent. Thus a mature salamander, of which the tail has been cut off, does not reproduce a larval tail; and a crab does not reproduce a larval leg. In the case of budding it was shown in the first part of this chapter that the new being thus produced does not retrograde in development—that is, does not pass through those earlier stages which the fertilized germ has to pass through. Nevertheless, the organisms operated on or multiplying themselves by buds must, by our hypothesis, include innumerable gemmules derived from every part or unit of the earlier stages of development; and why do not such gemmules reproduce the amputated part or the whole body at a corresponding early stage of development?
The second objection, which has been insisted on by Delpino, is that the tissues, for instance, of a mature salamander or crab, of which a limb has been removed, are already differentiated and have passed through their whole course of development; and how can such tissues in accordance with our hypothesis attract and combine with the gemmules of the part which is to be reproduced? In answer to these two objections we must bear in mind the evidence which has been advanced, showing that at least in a large number of cases the power of regrowth is a localized faculty, acquired for the sake of repairing special injuries to which each particular creature is liable; and, in the case of buds or fissiparous generation, for the sake of quickly multiplying the organism at a period of life when it can be supported in large numbers. These considerations lead us to believe that in all such cases a stock of nascent cells or of partially developed gemmules are retained for this special purpose either locally or throughout the body, ready to combine with the gemmules derived from the cells which come next in due succession. If this be admitted, we have a sufficient answer to the above two objections. Anyhow, pangenesis seems to throw a considerable amount of light on the wonderful power of regrowth.
EFFECT OF MORBID ACTION.
We have as yet spoken only of the removal of parts, when not followed by morbid action: but, when the operation is thus followed, it is certain that the deficiency is sometimes inherited. In a former chapter instances were given, as of a cow, the loss of whose horn was followed by suppuration, and her calves were destitute of a horn on the same side of their heads. But the evidence which admits of no doubt is that given by Brown-Séquard with respect to Guinea-pigs, which, after their sciatic nerves had been divided, gnawed off their own gangrenous toes, and the toes of their offspring were deficient in at least thirteen instances on the corresponding feet. The inheritance of the lost part in several of these cases is all the more remarkable as only one parent was affected; but we know that a congenital deficiency is often transmitted from one parent alone—for instance, the offspring of hornless cattle of either sex, when crossed with perfect animals, are often hornless. How, then, in accordance with our hypothesis can we account for mutilations being sometimes strongly inherited, if they are followed by diseased action? The answer probably is that all the gemmules of the mutilated or amputated part are gradually attracted to the diseased surface during the reparative process, and are there destroyed by the morbid action.
TRANSMISSION LIMITED.
The transmission of dormant gemmules during many successive generations is hardly in itself more improbable, as previously remarked, than the retention during many ages of rudimentary organs, or even only of a tendency to the production of a rudiment; but there is no reason to suppose that dormant gemmules can be transmitted and propagated forever. Excessively minute and numerous as they are believed to be, an infinite number, derived, during a long course of modification and descent, from each unit of each progenitor, could not be supported or nourished by the organism. But it does not seem improbable that certain gemmules, under favorable conditions, should be retained and go on multiplying for a much longer period than others. Finally, on the view here given, we certainly gain some insight into the wonderful fact that the child may depart from the type of both its parents, and resemble its grandparents, or ancestors removed by many hundreds of generations.
* * * * *
The child, strictly speaking, does not grow into the man, but includes germs which slowly and successively become developed and form the man. In the child, as well as in the adult, each part generates the same part. Inheritance must be looked at as merely a form of growth, like the self-division of a lowly-organized unicellular organism. Reversion depends on the transmission from the forefather to his descendants of dormant gemmules, which occasionally become developed under certain known or unknown conditions. Each animal and plant may be compared with a bed of soil full of seeds, some of which soon germinate, some lie dormant for a period, while others perish. When we hear it said that a man carries in his constitution the seeds of an inherited disease, there is much truth in the expression. No other attempt, as far as I am aware, has been made, imperfect as this confessedly is, to connect under one point of view these several grand classes of facts. An organic being is a microcosm—a little universe, formed of a host of self-propagating organisms, inconceivably minute and numerous as the stars in heaven.
About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.
This book is part of the public domain. Charles Darwin (2022). Darwinism Stated by Darwin himself. Urbana, Illinois: Project Gutenberg. Retrieved October 2022, from https://www.gutenberg.org/cache/epub/69147/pg69147-images.html
This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.