paint-brush
Relaxing cosmological constraints on current neutrino masses: Acknowledgment, Appendix & Referencesby@cosmological
255 reads

Relaxing cosmological constraints on current neutrino masses: Acknowledgment, Appendix & References

Too Long; Didn't Read

In this paper, researchers present a mass-varying neutrino model driven by scalar field dark energy, relaxing the upper bound on current neutrino mass.
featured image - Relaxing cosmological constraints on current neutrino masses: Acknowledgment, Appendix & References
Cosmological thinking: time, space and universal causation  HackerNoon profile picture

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) Vitor da Fonseca, Instituto de Astrof´ısica e Ciˆencias do Espa¸co, Faculdade de Ciˆencias da Universidade de Lisboa;

(2) Tiago Barreiro, Instituto de Astrof´ısica e Ciˆencias do Espa¸co, Faculdade de Ciˆencias da Universidade de Lisboa and 2ECEO, Universidade Lus´ofona;

(3) Nelson J. Nunes, Instituto de Astrof´ısica e Ciˆencias do Espa¸co, Faculdade de Ciˆencias da Universidade de Lisboa.

ACKNOWLEDGMENTS

The authors would like to thank C. van de Bruck and D. F. Mota for the fruitful discussions. This work is supported by the Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) through the research grants UIDB/04434/2020 and UIDP/04434/2020, and the BEYLA project PTDC/FIS-AST/0054/2021. V.d.F. acknowledges FCT support through fellowship 2022.14431.BD.

Appendix A: Parameter constraints for the MaVaN and the uncoupled scalar field models

In the appendix we show the triangular plots of the analysis made with the Plk18+BAO data for the MaVaN model (β free) and the uncoupled case (β = 0), i.e. no interaction between the quintessence component and the neutrino fluid.


FIG. 9: Probability distributions and 2D marginalized contours (68% and 95% CL) obtained with the Plk18+BAO data set.

References

[1] J. Lesgourgues and S. Pastor, Phys. Rept. 429, 307 (2006), arXiv:astro-ph/0603494.


[2] M. Gerbino and M. Lattanzi, Frontiers in Physics 5 (2018), 10.3389/fphy.2017.00070.


[3] Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), arXiv:hep-ex/9807003.


[4] K. Abe et al. (T2K), Phys. Rev. Lett. 112, 061802 (2014), arXiv:1311.4750 [hep-ex].


[5] I. Esteban, M. C. Gonzalez-Garcia, A. HernandezCabezudo, M. Maltoni, and T. Schwetz, JHEP 01, 106 (2019), arXiv:1811.05487 [hep-ph].


[6] S. Roy Choudhury and S. Hannestad, JCAP 07, 037 (2020), arXiv:1907.12598 [astro-ph.CO].


[7] M. Aker et al. (KATRIN), Phys. Rev. Lett. 123, 221802 (2019), arXiv:1909.06048 [hep-ex].


[8] S. S. Gershtein and Y. B. Zel’dovich, ZhETF Pisma Redaktsiiu 4, 174 (1966).


[9] N. Aghanim et al. (Planck), A&A 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].


[10] R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).


[11] A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998), arXiv:astro-ph/9805201.



[12] S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565 (1999), arXiv:astroph/9812133.


[13] P. Gu, X. Wang, and X. Zhang, Phys. Rev. D 68, 087301 (2003), arXiv:hep-ph/0307148.


[14] R. Fardon, A. E. Nelson, and N. Weiner, JCAP 10, 005 (2004), arXiv:astro-ph/0309800.


[15] R. D. Peccei, Phys. Rev. D 71, 023527 (2005), arXiv:hep-ph/0411137.


[16] A. W. Brookfield, C. van de Bruck, D. F. Mota, and D. Tocchini-Valentini, Phys. Rev. D 73, 083515 (2006), [Erratum: Phys.Rev.D 76, 049901 (2007)], arXiv:astro-ph/0512367.


[17] C. Wetterich, Phys. Lett. B 655, 201 (2007), arXiv:0706.4427 [hep-ph].


[18] L. Amendola, M. Baldi, and C. Wetterich, Phys. Rev. D 78, 023015 (2008), arXiv:0706.3064 [astro-ph].


[19] K. Ichiki and Y.-Y. Keum, JCAP 06, 005 (2008), arXiv:0705.2134 [astro-ph].


[20] U. Franca, M. Lattanzi, J. Lesgourgues, and S. Pastor, Phys. Rev. D 80, 083506 (2009), arXiv:0908.0534 [astro-ph.CO].


[21] C.-Q. Geng, C.-C. Lee, R. Myrzakulov, M. Sami, and E. N. Saridakis, JCAP 01, 049 (2016), arXiv:1504.08141 [astro-ph.CO].


[22] N. J. Nunes and J. E. Lidsey, Phys. Rev. D 69, 123511 (2004), arXiv:astro-ph/0310882.


[23] P. J. E. Peebles and B. Ratra, apjl 325, L17 (1988).


[24] V. da Fonseca, T. Barreiro, N. J. Nunes, S. Cristiani, et al., Astronomy & Astrophysics (2022), 10.1051/0004-6361/202243795.


[25] B. J. Barros and V. da Fonseca, JCAP 06, 048 (2023), arXiv:2209.12189 [astro-ph.CO].


[26] V. da Fonseca, T. Barreiro, and N. J. Nunes, Phys. Dark Univ. 35, 100940 (2022), arXiv:2104.14889 [astro-ph.CO].


[27] D. F. Mota, V. Pettorino, G. Robbers, and C. Wetterich, Phys. Lett. B 663, 160 (2008), arXiv:0802.1515 [astro-ph].


[28] N. J. Nunes, L. Schrempp, and C. Wetterich, Phys. Rev. D 83, 083523 (2011), arXiv:1102.1664 [astroph.CO].


[29] J. Sakstein and M. Trodden, Phys. Rev. Lett. 124, 161301 (2020), arXiv:1911.11760 [astro-ph.CO].


[30] M. Carrillo Gonz´alez, Q. Liang, J. Sakstein, and M. Trodden, (2023), arXiv:2302.09091 [astro-ph.CO].


[31] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, Astrophys. J. 876, 85 (2019), arXiv:1903.07603 [astro-ph.CO].


[32] K. C. Wong et al., Mon. Not. Roy. Astron. Soc. 498, 1420 (2020), arXiv:1907.04869 [astro-ph.CO].


[33] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, Astrophys. J. Lett. 908, L6 (2021), arXiv:2012.08534 [astro-ph.CO].


[34] J. Lesgourgues, “The cosmic linear anisotropy solving system (class) i: Overview,” (2011), arXiv:1104.2932 [astro-ph.IM].


[35] D. Blas, J. Lesgourgues, and T. Tram, JCAP 2011, 034–034 (2011).


[36] A. c. v. Slosar, Phys. Rev. D 73, 123501 (2006).


[37] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-J. Seo, and A. Slosar, JCAP 05, 023 (2014), arXiv:1308.4164 [astro-ph.CO].


[38] E. Di Valentino et al. (CORE), JCAP 04, 017 (2018), arXiv:1612.00021 [astro-ph.CO].


[39] T. Damour, G. W. Gibbons, and C. Gundlach, Phys. Rev. Lett. 64, 123 (1990).


[40] M. Chevallier and D. Polarski, International Journal of Modern Physics D 10, 213 (2001).


[41] E. Linder, Physical review letters 90, 091301 (2003).


[42] N. J. Nunes, AIP Conf. Proc. 736, 135 (2004).


[43] J. Lesgourgues, G. Mangano, G. Miele, and S. Pastor, Neutrino Cosmology (Cambridge University Press, 2013).


[44] T. Barreiro, E. J. Copeland, and N. J. Nunes, Phys. Rev. D 61, 127301 (2000).


[45] E. Lifshitz, J. Phys. (USSR) 10, 116 (1946).


[46] C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995), arXiv:astro-ph/9506072.


[47] J. Lesgourgues and T. Tram, Journal of Cosmology and Astroparticle Physics 2011, 032 (2011).


[48] L. Amendola, Mon. Not. Roy. Astron. Soc. 312, 521 (2000), arXiv:astro-ph/9906073.


[49] J. Lesgourgues, L. Perotto, S. Pastor, and M. Piat, Phys. Rev. D 73, 045021 (2006), arXiv:astroph/0511735.


[50] O. E. Bjaelde, A. W. Brookfield, C. van de Bruck, S. Hannestad, D. F. Mota, L. Schrempp, and D. Tocchini-Valentini, JCAP 01, 026 (2008), arXiv:0705.2018 [astro-ph].


[51] Planck Collaboration, Ade, P. A. R., Aghanim, N., et al., A&A 536, A1 (2011).


[52] D. J. ”Eisenstein and others” (SDSS), Astrophys. J. 633, 560 (2005), arXiv:astro-ph/0501171.


[53] S. Cole et al. (2dFGRS), Mon. Not. Roy. Astron. Soc. 362, 505 (2005), arXiv:astro-ph/0501174.


[54] W. J. Percival, S. Cole, D. J. Eisenstein, R. C. Nichol, J. A. Peacock, A. C. Pope, and A. S. Szalay, Mon. Not. Roy. Astron. Soc. 381, 1053 (2007), arXiv:0705.3323 [astro-ph].


[55] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A8 (2020), arXiv:1807.06210 [astro-ph.CO].


[56] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A5 (2020), arXiv:1907.12875 [astro-ph.CO].


[57] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, Mon. Not. Roy. Astron. Soc. 449, 835 (2015), arXiv:1409.3242 [astro-ph.CO].


[58] C. P. Ahn et al., The Astrophysical Journal Supplement Series 203, 21 (2012).


[59] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, Monthly Notices of the Royal Astronomical Society 416, 3017 (2011).


[60] J. Froustey, C. Pitrou, and M. C. Volpe, JCAP 12, 015 (2020), arXiv:2008.01074 [hep-ph].


[61] J. J. Bennett, G. Buldgen, P. F. De Salas, M. Drewes, S. Gariazzo, S. Pastor, and Y. Y. Y. Wong, JCAP 04, 073 (2021), arXiv:2012.02726 [hep-ph].


[62] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, JCAP 2013, 001 (2013), arXiv:1210.7183 [astro-ph.CO].


[63] T. Brinckmann and J. Lesgourgues, Physics of the Dark Universe 24, 100260 (2019).


[64] A. Lewis, “GetDist: Monte Carlo sample analyzer,” Astrophysics Source Code Library, record ascl:1910.018 (2019), arXiv:1910.13970 [astro-ph.IM].


[65] A. G´omez-Valent, Z. Zheng, L. Amendola, V. Pettorino, and C. Wetterich, Phys. Rev. D 104, 083536 (2021), arXiv:2107.11065 [astro-ph.CO].


[66] A. G´omez-Valent, Z. Zheng, L. Amendola, C. Wetterich, and V. Pettorino, Phys. Rev. D 106, 103522 (2022), arXiv:2207.14487 [astro-ph.CO].


[67] S. Alam et al. (eBOSS), Phys. Rev. D 103, 083533 (2021), arXiv:2007.08991 [astro-ph.CO].


[68] A. Amon et al. (DES), Phys. Rev. D 105, 023514 (2022), arXiv:2105.13543 [astro-ph.CO].


[69] T. M. C. Abbott et al. (Kilo-Degree Survey, DES), (2023), arXiv:2305.17173 [astro-ph.CO].


[70] L. F. Secco et al. (DES), Phys. Rev. D 105, 023515 (2022), arXiv:2105.13544 [astro-ph.CO].


[71] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Phys. Rev. Lett. 122, 221301 (2019), arXiv:1811.04083 [astro-ph.CO].


[72] D. H. F. de Souza and R. Rosenfeld, (2023), arXiv:2302.04644 [astro-ph.CO].


[73] P. Brax, C. van de Bruck, E. Di Valentino, W. Giar`e, and S. Trojanowski, (2023), arXiv:2303.16895 [astroph.CO].


[74] P. Brax, C. van de Bruck, E. Di Valentino, W. Giar`e, and S. Trojanowski, Phys. Dark Univ. 42, 101321 (2023), arXiv:2305.01383 [astro-ph.CO].


[75] F. J. Qu et al. (ACT), (2023), arXiv:2304.05202 [astro-ph.CO].


[76] H. Hildebrandt et al., Mon. Not. Roy. Astron. Soc. 465, 1454 (2017), arXiv:1606.05338 [astro-ph.CO].