paint-brush
PolyThrottle: Energy-efficient Neural Network Inference on Edge Devices: Arithmetic Intensityby@bayesianinference

PolyThrottle: Energy-efficient Neural Network Inference on Edge Devices: Arithmetic Intensity

by Bayesian InferenceApril 2nd, 2024
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

This paper investigates how the configuration of on-device hardware affects energy consumption for neural network inference with regular fine-tuning.
featured image - PolyThrottle: Energy-efficient Neural Network Inference on Edge Devices: Arithmetic Intensity
Bayesian Inference HackerNoon profile picture

This paper is available on arxiv under CC BY-NC-ND 4.0 DEED license.

Authors:

(1) Minghao Yan, University of Wisconsin-Madison;

(2) Hongyi Wang, Carnegie Mellon University;

(3) Shivaram Venkataraman, [email protected].

C ARITHMETIC INTENSITY

The arithmetic intensity of a 2D convolution layer can be computed by the following equation:




The notations used in equation 1 can be found in table 8.


The FLOPs term captures the total computation of each workload, while the arithmetic intensity term captures how much computation power and memory bandwidth will affect the final performance. Combining the aforementioned features with an intercept term, which captures the fixed overhead in neural network inference, we can build a model that predicts inference latency if the hardware operating frequency is stable.