Data engirds the entire world. Data is evolving just like any other thing on this globe. Being a part of this tech-oriented world, today we human beings create as much information in just 2 days as we did since the beginning of time till 2003.
Amazed? Well, there’s more.
The number of data industries store and capture magnifies every 1.2 years. Nonetheless, in this modern age of technological innovations and computational advancements, we upload 200 thousand photos on Facebook, generate 278 thousand tweets on Twitter, 1.8 million Facebook likes, and send 204 million emails every second! Facebook users share 30 billion pieces of content among them each day. Talking of Google, alone it processes approximately 40,000 search queries every second, making it more than 3.5 billion in a single day. The data centers of this era occupy an area of land equivalent to the size of almost 6000 football fields. Hence, data evolution is unpredictable.
Do you know that bad data can cost an organization up to 20% of its revenue? Astonishing isn’t it? But the question arises - how to dodge it? How to process that vast amount of data? How to clean it? Analyze it? How to form connections, patterns, trends, and correlations out of it? Here’s when big data technologies get developers’ and IT experts’ back.
Recently, big data has been on the tip of the tongue of almost everyone, paving the way from hype to mainstream. Undoubtedly, efficient and accurate data management for enterprises is crucial to stay competitive in this tech-driven era. Thanks to the emergence of revolutionary artificial intelligence and innovative machine learning algorithms an essential sub-field called Big Data can come into existence. From healthcare to manufacturing, from retail to the entertainment industry, big data is everywhere. Big data helps IT experts deal with several sets of complex real-time data analytics. Big data is defined by its qualities, also called 4 V’s - Veracity, Variety, Velocity, and Volume. Installation of big data technologies in the computer systems of developers and IT experts help to transform data into business insights. Moreover, big data technologies are categorized into 4 major fields of efficient utilization of data analytics, data mining, data visualization, and data storage
Below is the list of the 10 most evolving big data technologies emerging prominently in 2022 and upcoming years.
So without further ado, let’s glide right into it.
Elasticsearch is a free open search distributed analytics engine. It includes structured, unstructured, geospatial, numerical, and textual types of data. It is built on Apache Lucene, known for its scalability, speed, REST APIs, and distributed nature.
Language Support
Elasticsearch supports the following programming languages:
Ruby
Python
Perl
PHP
.NET (C#)
Go
Java
Javascript (Node.js)
Hadoop is a very popular open-source framework or data platform which was developed and deployed in Java. The purpose of Hadoop is to store, analyze, and process vast sets of unstructured data. Cutting-edge big data technologies engirdled the world with the data splitting from digital media. However, Apache Hadoop was one of those inventions that exhibited this wave of modernization.
Language Support
Hadoop supports several programming languages. Some of them are as follow:
R
PHP
C++
Python
Perl
MongoDB is a distributed document-oriented database. It aims to facilitate the data management of structured, semi-structured, or unstructured data in real-time for application developers. It also helps to store data in documents similar to JSON to allow dynamic and flexible schemas. It provides a dominant query language for indexing, ad hoc queries, graph search, text search, geo-based search, aggregation, and many other facilities.
Language Support
MongoDB supports a broad range of popular programming languages. Here are a few of them:
Erlang
Go
Scala
Ruby
Python
PHP
Perl
Node.js
Java
C#
C
C++
A robust big data technology, Tableau can be connected to numerous open-source databases. It provides free public options to create a proper visualization. The platform offers several amazing features such as integration with over 250 applications, assistance to solve real-time big data analytics issues, moderate speed to improve extensive operation, and more.
Language Support
Tableau SDK can be implemented using any of the following languages:
Python 2
Java
C
C++
Apache Cassandra is a reliable, robust, free, and open-source wide column store distributed NoSQL database management system. It is designed to handle an extensive amount of data across several commodity servers, providing high availability and scalability with not even a single chance of risk or failure.
Language Support
Cassandra supports Cassandra query language (SQL) to communicate with Cassandra Apache database.
The top-notch big data platform, RapidMiner, delivers transformational business insights to several industries. It plays a pivotal role in upskilling organizations’ extensibility and portability. RapidMiner is popular among researchers and non-programmers because of its compatibility with Flask, NodeJS, Android, iOS, and more.
Language Support
RapidMiner Studio currently supports The following languages:
English
Japanese
Qlik offers efficient, raw, and transparent data association aligned automatically with data association. Integration of predictive and embedded analysis assists data analysts to identify potential market trends. Moreover, it helps to distinguish better in-depth insights for better workflow.
Language Support
Qlik Sense currently supports the following languages:
Brazilian Portuguese
Traditional Chinese
Simplified Chinese
Japanese
Korean
German
Russian
Italian
French
Dutch
Turkish
Polish
Swedish
Spanish
English
Konstanz Information Miner or KNIME is an open-source and free reporting, data analytics, and integration platform. KNIME integrates several components for data mining and machine learning via its modular data pipelining “Lego of analytics” concept.
Language Used
KNIME is written in Java.
KNIME is based on Eclipse.
The Splunk platform transforms a tremendous amount of machine-generated data into times series events to answer operational and business questions in real-time. Splunk’s Search Processing Language (SPL) is at the core of the Splunk platform. The immense capabilities of SPL empower everyone to ask any question regarding any machine data. Splunk enterprise consists of two major services: Splunk Web Services(splunkweb) and Splunk Daemon(splunkd).
Language Used
Splunk Web Services: XML, Python, AJAX
Splunk Daemon: C++
R is a programming language and an ecosystem used for statistical graphics and computing. It is a GNU project just like the S programming language and environment. R provides a broad range of statistical techniques including clustering, classification, time series analysis, classical statistical tests, linear modeling, nonlinear modeling, and more. It also provides highly extensible graphical techniques. Its strength which makes it stand out is the ease of producing well-designed publication-quality plots including mathematical formulas and symbols.
Consequently, big data is evolving and will continue to evolve with more applications and acquisitions of existing big data technologies and new solutions associated with data mining, cloud integration, big data security, and more.
The general manager and vice president at Intel, Wei Li, claimed that
“Big data and its associated buzz words such as artificial intelligence, machine learning, and deep learning are becoming more sophisticated over time. We are yet to see more potential beyond retail trend analyses, fraud detection devices, and self-driving cars.”
Another prediction regarding big data is the acceleration of “actional data” or “fast data”. Unlike big data that typically relies on NoSQL databases and Hadoop, fast data processes real-time streams to analyze data promptly. This brings more value to IT experts and developers to make important strategic decisions when data arrives. According to a prediction by IDC, approximately 30% of the world’s data will be utilized in real-time by the year 2025. Moreover, organizations will make the information more accurate, actionable, and standardized by processing data through analytical platforms.
At the heart of it all, big data also has a dark side. Several tech giants are facing heat from the public and government regarding the issue of data privacy. Laws that govern people’s right to their data will result in restricted albeit honest data collection. Likewise, the rapid growth in online data exposing us to cyberattacks every second day will amplify the significance of cybersecurity in the approaching years.