paint-brush

This story draft by @homology has not been reviewed by an editor, YET.

Hyper-Realistic Human Generation with Latent Structural Diffusion: Licenses

Homology Technology FTW HackerNoon profile picture
0-item

Authors:

(1) Xian Liu, Snap Inc., CUHK with Work done during an internship at Snap Inc.;

(2) Jian Ren, Snap Inc. with Corresponding author: [email protected];

(3) Aliaksandr Siarohin, Snap Inc.;

(4) Ivan Skorokhodov, Snap Inc.;

(5) Yanyu Li, Snap Inc.;

(6) Dahua Lin, CUHK;

(7) Xihui Liu, HKU;

(8) Ziwei Liu, NTU;

(9) Sergey Tulyakov, Snap Inc.

Table of Links

Abstract and 1 Introduction

2 Related Work

3 Our Approach and 3.1 Preliminaries and Problem Setting

3.2 Latent Structural Diffusion Model

3.3 Structure-Guided Refiner

4 Human Verse Dataset

5 Experiments

5.1 Main Results

5.2 Ablation Study

6 Discussion and References

A Appendix and A.1 Additional Quantitative Results

A.2 More Implementation Details and A.3 More Ablation Study Results

A.4 More User Study Details

A.5 Impact of Random Seed and Model Robustness and A.6 Boarder Impact and Ethical Consideration

A.7 More Comparison Results and A.8 Additional Qualitative Results

A.9 Licenses

A.9 LICENSES

Image Datasets:


• LAION-5B**[**2] (Schuhmann et al., 2022): Creative Common CC-BY 4.0 license.


• COYO-700M**[**3] (Byeon et al., 2022): Creative Common CC-BY 4.0 license.


• MS-COCO**[**4] (Lin et al., 2014): Creative Commons Attribution 4.0 License.


Pretrained Models and Off-the-Shelf Annotation Tools:


• diffusers[5] (von Platen et al., 2022): Apache 2.0 License.


• CLIP[6] (Radford et al., 2021): MIT License.


• Stable Diffusion[7] (Rombach et al., 2022): CreativeML Open RAIL++-M License.


• YOLOS-Tiny[8] (Fang et al., 2021): Apache 2.0 License.


• BLIP2[9] (Guo et al., 2023): MIT License.


• MMPose[10] (Contributors, 2020): Apache 2.0 License.


• ViTPose[11] (Xu et al., 2022): Apache 2.0 License.


• Omnidata[12] (Eftekhar et al., 2021): OMNIDATA STARTER DATASET License


• MiDaS[13] (Ranftl et al., 2022): MIT License.


• clean-fid[14] (Parmar et al., 2022): MIT License.


• SDv2-inpainting[15] (Rombach et al., 2022): CreativeML Open RAIL++-M License.


• SDXL-base-v1.0[16] (Podell et al., 2023): CreativeML Open RAIL++-M License.


• Improved Aesthetic Predictor[17]: Apache 2.0 License.


Figure 6: Additional Comparison Results.



Figure 7: Additional Comparison Results.



Figure 8: Additional Comparison Results.



Figure 9: Additional Comparison Results.




Figure 10: Additional Qualitative Results on Zero-Shot MS-COCO Validation.




Figure 11: Additional Qualitative Results on Zero-Shot MS-COCO Validation.




Figure 12: Additional Qualitative Results on Zero-Shot MS-COCO Validation.


This paper is available on arxiv under CC BY 4.0 DEED license.


[2]https://laion.ai/blog/laion-5b/

[3]https://github.com/kakaobrain/coyo-dataset

[4]https://cocodataset.org/#home

[5]https://github.com/huggingface/diffusers

[6]https://github.com/openai/CLIP

[7]https://huggingface.co/stabilityai/stable-diffusion-2-base

[8]https://huggingface.co/hustvl/yolos-tiny

[9]https://huggingface.co/Salesforce/blip2-opt-2.7b

[10]https://github.com/open-mmlab/mmpose

[11]https://github.com/ViTAE-Transformer/ViTPose

[12]https://github.com/EPFL-VILAB/omnidata

[13]https://github.com/isl-org/MiDaS

[14]https://github.com/GaParmar/clean-fid

[15]https://huggingface.co/stabilityai/stable-diffusion-2-inpainting [16]https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0 [17]https://github.com/christophschuhmann/improved-aesthetic-predictor