paint-brush
HEAT IN MANby@scientificamerican

HEAT IN MAN

by Scientific American November 23rd, 2023
Read on Terminal Reader
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

At a recent meeting of the Physiological Society of Berlin, Prof. Zuntz spoke on heat regulation in man, basing his remarks on experiments made by Dr. Loewy. The store of heat in the human body at any one time is very large, equal, in fact, to nearly all the heat produced by the body during twenty hours, hence the heat given off to a calorimeter during a given period cannot be taken as a measure of the heat production. This determination must be based rather upon the amount of oxygen consumed and of carbonic acid gas given off. The purpose of the experiments was to ascertain what alteration the gaseous interchange of the body undergoes by the application of cold, inasmuch as existing data on this point are largely contradictory.
featured image - HEAT IN MAN
Scientific American  HackerNoon profile picture

Scientific American Supplement, No. 717, September 28, 1889, by Various, is part of the HackerNoon Books Series. You can jump to any chapter in this book here. HEAT IN MAN.

HEAT IN MAN.

At a recent meeting of the Physiological Society of Berlin, Prof. Zuntz spoke on heat regulation in man, basing his remarks on experiments made by Dr. Loewy. The store of heat in the human body at any one time is very large, equal, in fact, to nearly all the heat produced by the body during twenty hours, hence the heat given off to a calorimeter during a given period cannot be taken as a measure of the heat production. This determination must be based rather upon the amount of oxygen consumed and of carbonic acid gas given off. The purpose of the experiments was to ascertain what alteration the gaseous interchange of the body undergoes by the application of cold, inasmuch as existing data on this point are largely contradictory.


The observations were made on a number of men whose respiratory gases were compared, during complete rest, when they were at one time clothed, at another time naked, at temperatures from 12° to 15° C., and in warm and cold baths. Each experiment lasted from half an hour to an hour, during which period the gases were repeatedly analyzed. As a result of fifty-five experiments, twenty showed no alteration of oxygen consumption as the result of cooling, nine gave a lessened consumption, while the remaining twenty-six showed an increased using up of oxygen. This diversity of result is explicable on the basis of observations made by Prof. Zuntz, who was himself experimented upon, as to his subjective heat sensations during the experiments. He found that after the first impression due to the application of cold is overcome, it was quite easy to maintain himself in a perfectly passive condition; subsequently it required a distinct effort of the will to refrain from shivering and throwing the muscles into activity, and finally even this became no longer possible, and involuntary shivering and muscular contraction supervened, as soon as the body temperature (in ano) had fallen ½° to 1° C. During the first stage of cooling, Zuntz's oxygen consumption showed a uniform diminution; during the period also in which shivering was repressed by an effort of the will, cooling led to no increased consumption of oxygen, but as soon as shivering became involuntary there was at once an increased using up of oxygen and excretion of carbonic acid.


This explains the differences in the results of Dr. Loewy's experiments, and may be taken to show that in man, and presumably in large animals, heat regulation as directly dependent upon alteration (fall) in temperature of the surrounding medium does not exist; the increased heat production is rather the outcome of the movements resulting from the application of cold to the body. In small animals, on the other hand, there undoubtedly exists a heat regulation dependent upon an increased activity of chemical changes in the tissues set up by the application of cold to the surface of the body, and in this case the thermotaxic centers in the brain most probably play some part.—Dr. Herter gave an account of experiments made by Dr. Popoff on the artificial digestion of various and variously cooked meats. Lean beef and the flesh of eels and flounders were digested in artificial gastric juice; the amount of raw flesh thus peptonized was in all cases greater than that of cooked meat similarly treated. The flesh was shredded and heated by steam to 100° C. The result was the same for beef as for fish. When compared with each other, beef was, on the whole, the most digestible, but the amount of fish flesh which was peptonized was sufficiently great to do away with the evil repute which fish still has in Germany as a proteid food. Smoked meat differed in no essential extent from raw meat as regards its digestibility.




About HackerNoon Book Series: We bring you the most important technical, scientific, and insightful public domain books.


This book is part of the public domain. Various (2006). Scientific American Supplement, No. 717, September 28, 1889. Urbana, Illinois: Project Gutenberg. Retrieved https://www.gutenberg.org/cache/epub/17755/pg17755-images.html


This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org, located at https://www.gutenberg.org/policy/license.html.